Background: Using patient-derived xenografts (PDXs) to assess chemosensitivity to anti-cancer agents in real-time may improve cancer care by enabling individualized clinical decision-making. However, it is unknown whether this new approach will be met with acceptance by patients, family and community.
Methods: We used a cross-sectional structured survey to investigate PDX acceptability with 1550 individuals across Australia and New Zealand (648 survivors of adult and childhood cancer, versus 650 community comparisons; and 48 parents of childhood cancer survivors versus 204 community parents). We identified factors influencing willingness-to-use PDXs, willingness-to-pay, maximum acceptable wait-time, and maximum acceptable number of mice used per patient.
Findings: PDXs were highly acceptable: >80% of those affected by cancer felt the potential advantages of PDXs outweighed the disadvantages (community participants: 68%). Survivors' and survivors' parents' most highly endorsed advantage was 'increased chance of survival'. 'Harm to animals' was the least endorsed disadvantage for all groups. Cancer survivors were more willing to use PDXs than community comparisons [p < ·001]. Survivors and survivors' parents were willing to pay more [p < ·001; p = ∙004 respectively], wait longer for results [p = ·03; p = ∙01], and use more mice [p = ·01; p < ∙001] than community comparisons. Male survivors found PDXs more acceptable [p = ·01] and were willing to pay more [p < ·001] than female survivors. Survivors with higher incomes found PDXs more acceptable [p = ·002] and were willing to pay more [p < ·001] than survivors with lower incomes. Mothers found PDXs more acceptable [p = ·04] but were less willing to wait [p = ·02] than fathers.
Interpretation: We found significant attitudinal support for PDX-guided cancer care. Willingness-to-pay and maximum acceptable number of mice align well with likely future usage. Maximum acceptable wait-times were lower than is currently achievable, highlighting an important area for future patient education until technology has caught up.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286267 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2018.10.060 | DOI Listing |
Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Patient-derived xenografts (PDXs) can be improved by implantation of a humanized niche. Nevertheless, the overall complexity of the current protocols, as well as the use of specific biomaterials and procedures, limits the wider adoption of this approach. Here, we identify the essential minimum steps required to create the humanized scaffolds and achieve successful acute myeloid leukemia (AML) engraftment.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.
Introduction: Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches.
Areas Covered: The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens.
Front Oncol
January 2025
BIOCEV, First Faculty of Medicine, Charles University, Prague, Czechia.
Introduction: Progressing myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) is an indication for hypomethylating therapy (HMA, 5-Azacytidine (AZA)) and a BCL2 inhibitor (Venetoclax, VEN) for intensive chemotherapy ineligible patients. Mouse models that engraft primary AML samples may further advance VEN + AZA resistance research.
Methods: We generated a set of transplantable murine PDX models from MDS/AML patients who developed resistance to VEN + AZA and compared the differences in hematopoiesis of the PDX models with primary bone marrow samples at the genetic level.
Adv Sci (Weinh)
January 2025
General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China.
Intrahepatic cholangiocarcinoma (ICC), a formidable challenge in oncology, demands innovative biomarkers and therapeutic targets. This research highlights the importance of the circular RNA (circRNA) circPCSK6 and its peptide derivative circPCSK6-167aa in ICC. CircPCSK6 is significantly downregulated in both ICC patients and mouse primary ICC models, and its lower expression is linked to adverse prognosis, highlighting its pivotal role in ICC pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!