Multiple heavy metals (HMs) commonly coexist in mining areas, which highlights the necessity to select multiple HM-resistant plant growth-promoting bacteria for improving phytoremediation efficiency. In this study, we isolated and characterized 82 endophytic bacteria from the root nodules of black locust (Robinia pseudoacacia) grown in a Pb-Zn mining area. There were 80 isolates showing resistance to four HMs, 0.01-18.0 mM/L for Cd, 0.2-40.0 mM/L for Zn, 0.3-2.2 mM/L for Pb, and 0.2-1.4 mM/L for Cu. Indole-3-acetic acid production, siderophore production, and 1-aminocyclopropane-1-carboxylate deaminase activity were detected in 43, 50, and 17 isolates, respectively. Two symbiotic isolates selected with the highest potential for HM resistance and PGP traits, designated Mesorhizobium loti HZ76 and Agrobacterium radiobacter HZ6, were evaluated for promotion of plant growth and metal uptake by R. pseudoacacia seedlings grown in pots containing different levels of Cd, Zn, Pb, or Cu. HZ76 significantly increased plant shoot biomass, while HZ6 did not, compared with non-inoculated controls. The results indicate that inoculation with HZ76 or HZ6 relieved HM stress in the plants, depending on the type and concentration of HM in the treatment. Mesorhizobium loti HZ76 may be a better candidate for application in phytoremediation than A. radiobacter HZ6. The microsymbiosis between HM-resistant rhizobia and R. pseudoacacia is an interesting mutualistic system for phytoremediation in mining areas contaminated with multiple HMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2018.09.002 | DOI Listing |
Front Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFFront Microbiol
January 2025
Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.
Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom.
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, s CBE, to induce osmotic stress tolerance in under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by CBE in .
View Article and Find Full Text PDFSci Rep
January 2025
School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X 54001, Durban, 4000, South Africa.
Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!