Background: Echinococcosis is a parasitic zoonosis caused by Echinococcus larvae parasitism causing high mortality. The Tibetan Region of Sichuan Province is a high prevalence area for echinococcosis in China. Understanding the geographic distribution pattern is necessary for precise control and prevention. In this study, a spatial analysis was conducted to explore the town-level epidemiology of echinococcosis in the Sichuan Tibetan Region and to provide guidance for formulating regional prevention and control strategies.
Methods: The study was based on reported echinococcosis cases by the end of 2017, and each case was geo-coded at the town level. Spatial empirical Bayes smoothing and global spatial autocorrelation were used to detect the spatial distribution pattern. Spatial scan statistics were applied to examine local clusters.
Results: The spatial distribution of echinococcosis in the Sichuan Tibetan Region was mapped at the town level in terms of the crude prevalence rate, excess hazard and spatial smoothed prevalence rate. The spatial distribution of echinococcosis was non-random and clustered with the significant global spatial autocorrelation (I = 0.7301, P = 0.001). Additionally, five significant spatial clusters were detected through the spatial scan statistic.
Conclusions: There was evidence for the existence of significant echinococcosis clusters in the Tibetan Region of Sichuan Province, China. The results of this study may assist local health departments with developing better prevention strategies and prompt more efficient public health interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214160 | PMC |
http://dx.doi.org/10.1186/s40249-018-0486-4 | DOI Listing |
Sci Rep
January 2025
Department of Respiratory medicine, Taian 88 Hospital, Taian, 271000, People's Republic of China.
Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, PR China. Electronic address:
As one of the significant air pollutants, nitrogen oxides (NO = NO + NO) not only pose a great threat to human health, but also contribute to the formation of secondary pollutants such as ozone and nitrate particles. Due to substantial uncertainties in bottom-up emission inventories, simulated concentrations of air pollutants using GEOS-Chem model often largely biased from those of ground-level observations. To address this issue, we developed a new deep learning model to simulate the inverse process of the GEOS-Chem model.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.
View Article and Find Full Text PDFJ Am Coll Cardiol
January 2025
SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China. Electronic address:
Background: Epidemiological studies reported associations between ozone (O) exposure and cardiovascular diseases, yet the biological mechanisms remain underexplored. Hypoxia is a shared pathogenesis of O-associated diseases; therefore, we hypothesized that O exposure may induce changes in hypoxia-related markers, leading to adverse cardiovascular effects.
Objectives: This study aimed to investigate associations of short-term O exposure with hypoxic biomarkers and arterial stiffness.
Front Plant Sci
January 2025
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!