The power conversion efficiency of perovskite solar cells can be significantly improved if recombination losses and hysteresis effects, often caused by the presence of structural and chemical defects present at grain boundaries and interfaces, can be minimized during the processing of photoactive layers. As a crucial first step to address this issue, we performed density functional theory calculations to evaluate the electronic structure of the energetically favored (110) perovskite surface in the presence of the widely reported I antisite defects. Our calculations indicate that the nature of trap states formed is different for the perovskite surface with exposed methylammonium (MAI) and lead iodide (PbI) terminating groups. While, in MAI terminated surfaces, I antisite defects lead to shallow states close to the valence band, both deep and shallow states are created in the bandgap region in the PbI terminated surface. Furthermore, we determined contribution from individual atoms to the trap states and inferred that the trap states originate from the clusters of iodine atoms that are formed near the defect site. The exact nature of the defect state is strongly correlated with the atomic structure of these clusters and can be potentially tuned by controlling the processing conditions of the perovskite film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5044667 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.
Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Mechanical Engineering, Virginia Tech, Blacksburg, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.
In this study, a group of aluminum-doped lithium iron phosphate (LFP) with varying dopant concentrations (Li Al FePO/C, where = 0.01-0.03) was synthesized via a solid-state reaction.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFChemphyschem
January 2025
Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, I (Pb) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI (FA=CH(NH)) material, are found to create electron (hole) traps when the surfaces with I (Pb) antisite defects are negatively (positively) charged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!