The rate coding hypothesis is the oldest and still one of the most accepted and investigated scenarios in neuronal activity analyses. However, the actual neuronal firing rate, while informally understood, can be mathematically defined in several different ways. These definitions yield distinct results; even their average values may differ dramatically for the simplest neuronal models. Such an inconsistency, together with the importance of "firing rate," motivates us to revisit the classical concept of the instantaneous firing rate. We confirm that different notions of firing rate can in fact be compatible, at least in terms of their averages, by carefully discerning the time instant at which the neuronal activity is observed. Two general cases are distinguished: either the inspection time is synchronised with a reference time or with the neuronal spiking. The statistical properties of the instantaneous firing rate, including parameter estimation, are analyzed, and compatibility with the intuitively understood concept is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5036831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!