Smart materials and structures with tunable electromagnetic (EM) properties are highly demanded for active environmental sensitive systems. As polar molecules in the environment, in this work, water and ice are utilized as wetting and freezing conditions to manipulate the electromagnetic response behaviors in a graphene-based composite material, aiming to achieve a smart weather-manipulated EM metamaterial. Owing to the introduced polar water and ice phase in the self-assembled porous electromagnetic attenuating networks, energy consumption of EM waves is significantly altered via multiple scattering of polar induced interfaces. In frozen conditions, a wide absorption band (2-18 GHz) with efficient absorption (reflection loss < -10 dB) has been obtained. Additionally, the mechanical feature of the as-assembled metamaterials could also be manipulated via altering the weather conditions in terms of changing the phase of the introduced water. Interestingly, the mechanical properties could be massively changed while the broadband absorption capability has rarely been impacted. Implication of the results highlights an efficient method for fabricating smart EM metamaterials that are capable of being manipulated by the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b15643DOI Listing

Publication Analysis

Top Keywords

water ice
8
weather-manipulated smart
4
smart broadband
4
electromagnetic
4
broadband electromagnetic
4
electromagnetic metamaterials
4
metamaterials smart
4
smart materials
4
materials structures
4
structures tunable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!