This paper proposes a deep convolutional neural network (CNN) -based technique for the detection of micro defects on metal screw surfaces. The defects we consider include surface damage, surface dirt, and stripped screws. Images of metal screws with different types of defects are collected using industrial cameras, which are then employed to train the designed deep CNN. To enable efficient detection, we first locate screw surfaces in the pictures captured by the cameras, so that the images of screw surfaces can be extracted, which are then input to the CNN-based defect detector. Experiment results show that the proposed technique can achieve a detection accuracy of 98%; the average detection time per picture is 1.2 s. Comparisons with traditional machine vision techniques, e.g., template matching-based techniques, demonstrate the superiority of the proposed deep CNN-based one.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263637 | PMC |
http://dx.doi.org/10.3390/s18113709 | DOI Listing |
Acta Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFJ Arthroplasty
January 2025
Oakland University William Beaumont School of Medicine, Rochester, MI; Department of Orthopedic Surgery, Corewell Health William Beaumont University Hospital, Royal Oak, MI. Electronic address:
Background: Hip instability following total hip arthroplasty (THA) is among the most common indications for revision surgery. The implantation of dual-mobility (DM) systems, designed to improve stability, continues to rise, and thus, characterizing in vivo implant damage modes is paramount.
Methods: Under an implant retrieval protocol, 51 DM THA systems were analyzed.
Biomacromolecules
January 2025
BOKU-University, Institute of Physics and Materials Science, Vienna, Peter-Jordan-Straße 82, Vienna 1190, Austria.
To understand xylan-cellulose interactions in softwood, the adsorption behavior of hexameric softwood xylan proxies with various substitutions was analyzed on the three surfaces of a hexagonal cellulose microfibril. The study found that all surfaces could bind xylan motifs, showing equally high affinity for the hydrophilic (110) and hydrophobic (100) surfaces and significantly lower affinity for the hydrophilic (11̅0) surface. Unsubstituted xylose hexamers had the highest affinity and most ordered adsorption structures, while substitutions generally reduced the affinity and regularity.
View Article and Find Full Text PDFOper Orthop Traumatol
January 2025
Klinik für Unfall‑, Hand und Wiederherstellungschirurgie, Universitätsmedizin Rostock, Schillingallee 35, 18057, Rostock, Deutschland.
Objective: Treatment with transcutaneous osseointegrated prosthesis systems (TOPS) for short femoral amputation stumps aims to restore independent walking ability after proximal femoral amputation by direct bone-guided prosthesis anchorage. This cannot be safely achieved with conventional socket prostheses due to the mechanically inadequate socket contact surface.
Indications: Treatment of patients with short transfemoral stumps who cannot be mobilized sufficiently with conventional socket prostheses.
Acta Bioeng Biomech
September 2024
Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
: The aim of this study was to evaluate the abrasive wear of the sliding screw-rod joint used in growth guidance system (GGS) stabilizers, allowing for the translation of the screw along the rod during the spinal growth process in a standard and modified system. : The study used single kinematic screw-rod pairs made of titanium alloy Ti6Al4V. Mechanical tests (cyclic loads) simulated the stabilizer's operation under conditions similar to actual use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!