In this work, the efficiencies of Fenton catalytic and sonolysis processes were investigated separately and in combination together for the treatment and reduction of sludge volume. Moreover, the effects of operating parameters such as retention time, initial pH, iron concentration, and HO concentration on COD reduction as well as the proportion of volatile solids to total solids (VS/TS) were studied. Finally, the effects of these processes on the sludge volume index (SVI) and sludge volume reduction (SVR) were evaluated. According to the results, the retention time of 60 min, pH = 3, hydrogen peroxide concentration of 0.13 M/L, and iron concentration of 2 mM/L were achieved as the optimum values. Furthermore, the SVR and SVI removal efficiencies in the Fenton process were 19% and 25%, respectively, but the removal efficiency in sonolysis process was very low and can be ignored. Under optimum conditions in sono-Fenton (SF) process, the SVR and SVI removal efficiencies were 55.7% and 83%, respectively. The results showed that by combining sonolysis and Fenton processes; due to the synergistic effect of ultrasonic waves, Fenton agent, and the production of more hydroxyl radicals; the COD removal efficiency increased to 77%, and the proportion of VS/TS in row activated sludge was reduced from 75% to 26%. Generally, by combining sonolysis and Fenton processes, the removal efficiency increased significantly as compared to separate processes owing to the production of more oxidizing agents and improving mass transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.10.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!