This study cross-sectionally examines in the elderly population: (a) the association of type 2 diabetes with executive function (EF); (b) the effect of BMI on both type 2 diabetes and EF; (c) the association between glycaemia control and EF in type 2 diabetes. 6823 older individuals with overweight/obesity and metabolic syndrome participating in the PREDIMED-PLUS study, were assessed with a battery of cognitive tests and a medical interview. ANOVA showed a significantly worse performance on EF in type 2 diabetes vs. non-diabetic individuals. Two complementary models were displayed: (1) in the whole sample, the presence of type 2 diabetes, depressive symptoms and BMI had a direct negative effect on EF, while apnoea had an indirect negative effect; (2) in the diabetes subsample, higher illness duration was associated with worse performance in EF. Participants with type 2 diabetes and HbA1c<53 mmol/mol displayed better cognitive performance when compared to those with HbA1c≥53 mmol/mol. Our results provide a controlled comprehensive model that integrates relevant neuropsychological and physical variables in type 2 diabetes. The model suggests that, to improve treatment adherence and quality of life once diabetes has been diagnosed, cognitive decline prevention strategies need to be implemented while monitoring depressive symptoms, BMI and glycaemia control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208341PMC
http://dx.doi.org/10.1038/s41598-018-33843-8DOI Listing

Publication Analysis

Top Keywords

type diabetes
28
metabolic syndrome
8
predimed-plus study
8
worse performance
8
type
7
diabetes
7
diabetes cognitive
4
cognitive impairment
4
impairment older
4
older population
4

Similar Publications

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Introduction: The most frequent form of diabetes in pediatric patients is polygenic autoimmune diabetes (T1D), but single-gene variants responsible for autoimmune diabetes have also been described. Both disorders share clinical features, which can lead to monogenic forms being misdiagnosed as T1D. However, correct diagnosis is crucial for therapeutic choice, prognosis and genetic counseling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!