The hydrogen evolution reaction (HER) that generates H from the reduction of HO by Fe is among the most fundamental of the processes that control reactivity in environmental systems containing zerovalent iron (ZVI). To develop a comprehensive kinetic model for this process, a large and high-resolution data set for HER was measured using five types of ZVI pretreated by acid-washing and/or sulfidation (in pH 7 HEPES buffer). The data were fit to four alternative kinetic models using nonlinear regression analysis applied to the whole data set simultaneously, which allowed some model parameters to be treated globally across multiple experiments. The preferred model uses two independent reactive phases to match the two-stage character of most HER data, with rate constants ( k's) for each phase fitted globally by iron type and phase quantities ( S's) fitted as fully local (independent) parameters. The first, faster stage was attributed to a reactive mineral intermediate (RMI) phase like Fe(OH), which may form in all experiments during preequilibration, but is rapidly consumed, leaving the second, slower stage of HER, which is due to reaction of Fe. In addition to providing a deterministic model to explain the kinetics of HER by ZVI over a wide range of conditions, the results provide an improved quantitative basis for comparing the effects of sulfidation on ZVI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b04436 | DOI Listing |
iScience
December 2024
Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India.
This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Fenton reactions, commonly employed in environmental remediation, decompose H₂O₂ using Fe⁺ to generate free radicals. However, the efficiency is often limited by the slow conversion of Fe³⁺ to Fe⁺. In this study, we synthesize zero-valent iron nanoparticles (nZVI) via a green, plant extract-mediated reduction method, resulting in nZVI coated with a reductive polyphenolic layer that enhances Fe³⁺/Fe⁺ cycling.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Civil Engineering, Shandong University, Jinan, 250061, China. Electronic address:
The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).
View Article and Find Full Text PDFBioelectrochemistry
December 2024
School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China. Electronic address:
Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China.
Anaerobic digestion is a sustainable technology for methane (CH) production from organic waste and wastewater. However, its performance is frequently hindered by excessive acidification in readily acidified substrates, such as starch wastewater. Oyster shell (OS), a natural alkaline material, effectively regulates pH and enhances CH production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!