The translational potential of cell-based therapies is often limited by complications related to effectively engineering and manufacturing functional cells. While the use of electroporation is widespread, the impact of electroporation on cell state and function has yet to be fully characterized. Here, we use a genome-wide approach to study optimized electroporation treatment and identify striking disruptions in the expression profiles of key functional transcripts of human T cells. These genetic disruptions result in concomitant perturbation of cytokine secretion including a 648-fold increase in IL-2 secretion ( < 0.01) and a 30-fold increase in IFN-γ secretion ( < 0.05). Ultimately, the effects at the transcript and protein level resulted in functional deficiencies in vivo, with electroporated T cells failing to demonstrate sustained antigen-specific effector responses when subjected to immunological challenge. In contrast, cells subjected to a mechanical membrane disruption-based delivery mechanism, cell squeezing, had minimal aberrant transcriptional responses [0% of filtered genes misregulated, false discovery rate (FDR) q < 0.1] relative to electroporation (17% of genes misregulated, FDR q < 0.1) and showed undiminished effector responses, homing capabilities, and therapeutic potential in vivo. In a direct comparison of functionality, T cells edited for PD-1 via electroporation failed to distinguish from untreated controls in a therapeutic tumor model, while T cells edited with similar efficiency via cell squeezing demonstrated the expected tumor-killing advantage. This work demonstrates that the delivery mechanism used to insert biomolecules affects functionality and warrants further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243275PMC
http://dx.doi.org/10.1073/pnas.1809671115DOI Listing

Publication Analysis

Top Keywords

effector responses
8
delivery mechanism
8
cell squeezing
8
genes misregulated
8
cells edited
8
cells
7
electroporation
5
cell
4
cell engineering
4
engineering microfluidic
4

Similar Publications

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Engineered Cellular Therapies for the Treatment of Thoracic Cancers.

Cancers (Basel)

December 2024

Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!