Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with β1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin-binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA-mDia2-regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302171 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.002779 | DOI Listing |
Commun Biol
January 2025
Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).
View Article and Find Full Text PDFBull Math Biol
January 2025
School of Mathematics, University of Minnesota, Minneapolis, USA.
Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.
View Article and Find Full Text PDFNat Immunol
January 2025
Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia.
View Article and Find Full Text PDFParasites Hosts Dis
November 2024
Department of Clinical Laboratory Sciences, Arkansas State University, PO Box 910, State University, AR 72467, USA.
Naegleria fowleri, a brain-eating amoeba, thrives in lakes and rivers with aquatic vegetation and causes primary amoebic meningoencephalitis (PAM) in humans. Most recently, it has become such a serious problem that N. fowleri was detected in tap water in Houston, USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!