Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats.

Mol Pain

1 Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.

Published: February 2019

The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247483PMC
http://dx.doi.org/10.1177/1744806918814345DOI Listing

Publication Analysis

Top Keywords

insular cortex
32
analgesic effects
16
neuropathic pain
12
effects urb597
12
urb597
9
faah inhibitor
8
insular
8
inhibitor insular
8
cortex
8
urb597 treatment
8

Similar Publications

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions.

View Article and Find Full Text PDF

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Objective: Epilepsy is considered as a network disorder of interacting brain regions. The propagation of local epileptic activity from the seizure onset zone (SOZ) along neuronal networks determines the semiology of seizures. However, in highly interconnected brain regions such as the insula, the association between the SOZ and semiology is blurred necessitating invasive stereoelectroencephalography (SEEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!