A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Millimeter-sized capsules prepared using liquid marbles: Encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force. | LitMetric

Hypothesis: In our previous study, we prepared millimeter-sized spherical hard capsules by solidifying droplets of liquid monomer or polymer solution placed on superamphiphobic surface. Application of liquid marbles in place of the naked droplets for capsule preparation has a great potential to increase encapsulation efficiency of high volatile ingredients. Further, interfacial thermodynamic prediction of internal configuration of capsules from spreading coefficients may be effective to prepare core/shell capsule.

Experiments: Droplets of liquid monomer containing a volatile ingredient were rolled on superamphiphobic powders to prepare liquid marbles and solidified by photopolymerization. For preparation of core/shell capsules, the liquid marbles injected with an immiscible water droplet were also solidified.

Findings: A volatile ingredient could be encapsulated with higher efficiency than our previous method. Interfacial thermodynamic prediction of internal configuration of capsules from spreading coefficients indicated successful formation of core/shell capsules. However, photopolymerization of the liquid marbles in a static condition resulted in formation of not only core/shell capsules but also acorn-type capsules. Furthermore, the core/shell capsules were distorted and the shell thickness was not uniform. Rolling of the liquid marbles, which generated centrifugal force inside of the liquid marbles, was effective to prepare spherical capsules with highly uniform shell thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.10.058DOI Listing

Publication Analysis

Top Keywords

liquid marbles
28
core/shell capsules
16
shell thickness
12
capsules
10
liquid
9
capsules highly
8
highly uniform
8
uniform shell
8
centrifugal force
8
droplets liquid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!