Onchocerciasis is an endemic disease in parts of sub-Saharan Africa. Complex mathematical models are being used to assess the likely efficacy of efforts to eradicate the disease; however, their predictions have not always been borne out in practice. In this paper, we represent the immunological aspects of the disease with a single empirical parameter in order to reduce the model complexity. Asymptotic approximation allows us to reduce the vector-borne epidemiological model to a model of an infectious disease with nonlinear incidence. We then consider two versions, one with continuous treatment and a more realistic one where treatment occurs only at intervals. Thorough mathematical analysis of these models yields equilibrium solutions for the continuous case, periodic solutions for the pulsed case, and conditions for the existence of endemic disease equilibria in both cases, thereby leading to simple model criteria for eradication. The analytical results and numerical experiments show that the continuous treatment version is an excellent approximation for the pulsed version and that the current onchocerciasis eradication strategy is inadequate for regions where the incidence is highest and unacceptably slow even when the long-term behavior is the disease-free state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2018038 | DOI Listing |
Curr Opin Insect Sci
January 2025
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. Electronic address:
Invasive social wasps and hornets pose significant threats to biodiversity, ecosystem services, and animal and human health. This review evaluates recent advances in invasive wasp and hornet management using criteria developed for assessing the feasibility of eradication and control programmes. I emphasise the importance and methods of early detection, citizen science, public involvement, and the role of advanced technologies such as artificial intelligence, drones, and radio telemetry for nest detection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science &Technology Center, Chengdu 610213, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens. The multi-drug resistance and strong biofilm-forming ability make the treatment of MRSA infections challenging. It is urgent to develop antibiotic-free, noninvasive and effective strategies against MRSA infections.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
March 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
Decapod iridovirus 1 (DIV1) poses a major challenge to sustainable shrimp farming and poses a serious hazard to aquaculture industry. This study investigated the complex interaction between DIV1 infection and water temperature, focusing on the effect of high temperature on DIV1 infection due to Penaeus monodon. Using models of latent and acute infection, the study revealed the response of P.
View Article and Find Full Text PDFFront Microbiol
January 2025
Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia.
Introduction: is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from cultivated in Vietnam.
Methods: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods.
Neotrop Entomol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry Univ, Fuzhou, China.
The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!