The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were β-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1β plasmids and carried tfd clusters highly similar to those of the IncP-1β plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1β plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1β plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1β plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiy214DOI Listing

Publication Analysis

Top Keywords

incp-1β plasmids
16
catabolic genes
12
plasmids
8
rice fields
8
mekong delta
8
tfd genes
8
genes
6
tfd
5
incp-1β
5
intra- inter-field
4

Similar Publications

The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.

View Article and Find Full Text PDF

Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function.

NPJ Regen Med

December 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.

As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.

View Article and Find Full Text PDF

A highly prevalent and specific cryptic plasmid pBI143 for human fecal pollution tracking in a subtropical urban river.

Water Res

December 2024

CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia. Electronic address:

Microbial source tracking (MST) is a critical tool for identifying sources of human and animal fecal pollution in aquatic environments. To enhance human fecal pollution tracking, this study evaluated the performance characteristics of pBI143, a cryptic plasmid recently identified for potential MST applications. Nucleic acid samples from ten animal species were screened for pBI143, revealing its presence in a small number of pigs, cows, dogs, cats, and flying fox fecal samples.

View Article and Find Full Text PDF

Plasmid hybrids as vectors for antibiotic resistance in environmental Escherichia coli.

Sci Total Environ

December 2024

CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.

This study investigated the potential role of phages in the dissemination of antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) in Escherichia coli (E. coli). A comprehensive in silico analysis of 18,410 phage sequences retrieved from the National Center for Biotechnology Information database (NCBI) revealed distinct carriage patterns for ARGs and VFGs between lytic, temperate, and chronic phage types.

View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

December 2024

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:

Background: Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC.

Purpose: This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!