Background And Aims: For symbiotic organisms, their colonization and spread across remote oceanic islands should favour generalists. Plants that form obligate symbiotic associations with microbes dominate island ecosystems, but the relationship between island inhabitance and symbiotic specificity is unclear, especially in the tropics. To fill this gap, we examined the mycorrhizal specificity of the Hawaiian endemic orchid Anoectochilus sandvicensis across multiple populations encompassing its entire geographic distribution.

Methods: By molecular phylogenetic approaches we identified the mycorrhizal fungi associated with A. sandvicensis across its entire geographic distribution and determined the relationship of these fungi to others found elsewhere around the globe. With richness estimators, we assessed the mycorrhizal specificity of A. sandvicensis within and among islands. We then tested whether geographic proximity of orchid populations was a significant predictor for the presence of particular mycorrhizal fungi and their community composition.

Key Results: We found that each population of A. sandvicensis forms specific associations with one of three fungi in the genus Ceratobasidium and that the closest relatives of these fungi are globally widespread. Based on diversity indices, A. sandvicensis populations were estimated to partner with one to four mycorrhizal taxa with an estimated total of four compatible mycorrhizal fungi across its entire distribution. However, the geographic proximity of orchid populations was not a significant predictor of mycorrhizal fungal community composition.

Conclusions: Our findings indicate that the colonization and survival of plant species on even the most remote oceanic islands is not restricted to symbiotic generalists, and that partnering with few, but cosmopolitan microbial symbionts is an alternative means for successful island establishment. We suggest that the spatial distribution and abundance of symbionts in addition to island age, size and isolation should also be taken into consideration for predictions of island biodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417469PMC
http://dx.doi.org/10.1093/aob/mcy198DOI Listing

Publication Analysis

Top Keywords

mycorrhizal specificity
12
mycorrhizal fungi
12
mycorrhizal
8
geographic distribution
8
hawaiian endemic
8
endemic orchid
8
orchid anoectochilus
8
anoectochilus sandvicensis
8
remote oceanic
8
oceanic islands
8

Similar Publications

This study evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) species, including (FM), (RI), (CE), and a Mycorrhizal mix (MM) comprising these three species, on pepper plants ( L.) inoculated with two isolates of (48- and 18-) and two isolates of mix (50-F. mixture and 147-F.

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi.

View Article and Find Full Text PDF

Interactions with mycorrhizal fungi are increasingly recognized as crucial ecological factors influencing orchids' distribution and local abundance. While some orchid species interact with multiple fungal partners, others show selectivity in their mycorrhizal associations. Additionally, orchids that share the same habitat often form relationships with different fungal partners, possibly to reduce competition and ensure stable coexistence.

View Article and Find Full Text PDF
Article Synopsis
  • Land use and agricultural practices significantly impact soil fungal communities, which in turn affect overall soil health.
  • A study examined fungal communities across different soil layers (up to 80 cm) in four types of boreal soils: organic crop rotation, conventional crop rotation, meadow, and forest.
  • Findings revealed that soil type influenced specific fungal groups, with forests showing higher beneficial fungi, meadows having more decomposing fungi, and crop rotations featuring increased plant pathogens, highlighting the need to analyze subsoils in soil health research.
View Article and Find Full Text PDF

Root and mycorrhizal nutrient acquisition strategies in the succession of subtropical forests under N and P limitation.

BMC Plant Biol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.

Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!