CRISPR Correction of Duchenne Muscular Dystrophy.

Annu Rev Med

Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; email:

Published: January 2019

The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415693PMC
http://dx.doi.org/10.1146/annurev-med-081117-010451DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
dmd mutations
8
dmd
6
crispr
4
crispr correction
4
correction duchenne
4
dystrophy ability
4
ability efficiently
4
efficiently modify
4

Similar Publications

Muscle imaging in facioscapulohumeral muscular dystrophy research: A scoping review and expert recommendations.

Neuromuscul Disord

January 2025

Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.

Clinical trial readiness is an important topic in the field of facioscapulohumeral muscular dystrophy (FSHD). As FSHD is a slowly progressive and clinically heterogeneous disease, imaging biomarkers have been proposed to complement clinical outcome measures. Muscle magnetic resonance imaging (MRI), ultrasound and dual energy X-ray absorptiometry (DEXA) have been used to measure disease severity, activity and progression.

View Article and Find Full Text PDF

Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy.

J Muscle Res Cell Motil

January 2025

Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.

Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin.

View Article and Find Full Text PDF

Most patients with Duchenne muscular dystrophy (DMD) are non-ambulant. Preserving proximal motor function is crucial, rarely studied. Tamoxifen, a selective oestrogen receptor modulator, reduced signs of muscular pathology in a DMD mouse model.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!