Growth and production of volatile compounds of yarrow (Achillea millefolium L.) under different irrigation depths.

An Acad Bras Cienc

Laboratório de Cultura de Tecidos e Plantas Medicinais, Departamento de Agricultura, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil.

Published: February 2019

Yarrow (Achillea millefolium L., Asteraceae) is an important medicinal plant used worldwide for its medicinal properties such as the analgesic, antioxidant and anti-inflammatory ones. The aim of this study was to evaluate the growth and production of photosynthetic pigments and of volatile constituents of Achillea millefolium L. under different irrigation depths. The treatments were the application of 55, 110, 220, 440 and 880 mm of water for a period of 110 days. Data were submitted to polynomial regression analysis at 5% probability, while the volatile constituents were analyzed by standard deviation. Different irrigation depths provided quadratic growth responses being the highest dry matter production at the depth of 440 mm. The contents of chlorophyll a, b, total and carotenoids were higher at the lower depth tested (55 mm). The major volatile compounds identified were sabinene, 1,8-cineol, borneol and β-caryophyllene. Increased water availability reduced the complexity of the volatile fraction of essential oil. Thus, it is recommended that the species be cultivated at 440 mm irrigation depth to have a higher production of dry matter and lower variation in the volatile profile of the essential oil.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765201820180092DOI Listing

Publication Analysis

Top Keywords

achillea millefolium
12
irrigation depths
12
growth production
8
volatile compounds
8
yarrow achillea
8
millefolium irrigation
8
volatile constituents
8
dry matter
8
essential oil
8
volatile
6

Similar Publications

The radionuclide contamination of the environment is an abiotic stress factor that influences biological systems. Plants growing in contaminated areas for many generations provide a unique opportunity to study adaptive strategies aimed at maintaining homeostasis under elevated radiation levels. Using non-targeted metabolomics approaches, we investigated the metabolomic profiles of Achillea millefolium L.

View Article and Find Full Text PDF

The present experiment aimed to formulate four ointments that included mixtures of plant extracts (, , , and ), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. : In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days.

View Article and Find Full Text PDF

Background: The therapeutic properties of Achillea Millefolium (AM) in regulating blood lipids and liver enzymes have been proven in studies. Considering the abnormal lipid levels and elevated liver enzymes in diabetic patients, this study was conducted to investigate the effect of AM on the lipid profile and serum level of liver enzymes in type 2 diabetic (T2D) patients.

Methods: In this 90-day double-blind clinical trial study, 60 eligible diabetic patients were enrolled and divided into intervention and control (each 30 patients) groups.

View Article and Find Full Text PDF

Niche shift and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae).

Ann Bot

January 2025

Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

Background And Aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.

View Article and Find Full Text PDF

Authenticity and Bioactive Markers Search in the Phenolic-Rich Extracts of Asteraceae Medicinal Plants Through Integrative Computational Chemometrics.

Food Sci Nutr

January 2025

Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI Universidade de Vigo Vigo Spain.

The Asteraceae family has been of significant concern for ethnobotanical studies, thanks to its health-promoting properties linked to a plethora of bioactive compounds, among which phenolic compounds play a critical role. In this work, a workflow based on computational chemometrics was employed to assess the authenticity and biomarker search of five key Asteraceae species commonly employed in traditional medicine. The UHPLC-DAD-ESI/MS-MS phenolic profile of Asteraceae extracts was combined with the evaluation of several in vitro biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!