The aim of this study is the identification of metabolomic biomarkers of sepsis and sepsis-induced acute kidney injury (AKI) in an experimental model. Pigs were anesthetized and monitored to measure mean arterial pressure (MAP), systemic blood flow (Q), mean pulmonary arterial pressure, renal artery blood flow (Q), renal cortical blood flow (Q), and urine output (UO). Sepsis was induced at t = 0 min by the administration of live Escherichia coli ( n = 6) or saline ( n = 8). At t = 300 min, animals were killed. Renal tissue, urine, and serum samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Principal component analyses were performed on the processed NMR spectra to highlight kidney injury biomarkers. Sepsis was associated with decreased Q and MAP and decreased Q, Q, and UO. Creatinine serum concentration and neutrophil gelatinase-associated lipocalin (NGAL) serum and urine concentrations increased. NMR-based metabolomics analysis found metabolic differences between control and septic animals: 1) in kidney tissue, increased lactate and nicotinuric acid and decreased valine, aspartate, glucose, and threonine; 2) in urine, increased isovaleroglycine, aminoadipic acid, N-acetylglutamine, N-acetylaspartate, and ascorbic acid and decreased myoinositol and phenylacetylglycine; and 3) in serum, increased lactate, alanine, pyruvate, and glutamine and decreased valine, glucose, and betaine concentrations. The concentration of several metabolites altered in renal tissue and urine samples from septic animals showed a significant correlation with markers of AKI (i.e., creatinine and NGAL serum concentrations). NMR-based metabolomics is a potentially useful tool for biomarker identification of sepsis-induced AKI.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00315.2018DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
blood flow
12
metabolomic biomarkers
8
experimental model
8
acute kidney
8
biomarkers sepsis
8
arterial pressure
8
renal tissue
8
tissue urine
8
ngal serum
8

Similar Publications

Unveiling the immunomodulator role of plasma oxidized lipids in SA-AKI progression: a CRRT perspective.

Front Physiol

December 2024

Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Air Force Medical University, Xi'an, Shaanxi Province, China.

Background: Plasma oxidized lipids are intimately linked to immune regulation as bioactive mediators. However, it is not clear whether they are related to the progression of sepsis-associated acute kidney injury (SA-AKI) and the effect of continuous renal replacement therapy (CRRT). This study intends to explore the changes in certain oxidized lipid during CRRT treatment and their correlation with the immune microenvironment and prognosis by analyzing plasma oxidative lipidomics.

View Article and Find Full Text PDF

Introduction: The Sequential Organ Failure Assessment (SOFA) score is a widely utilized clinical tool for evaluating the severity of organ failure in critically ill patients and assessing their condition and prognosis in the intensive care unit (ICU). Research has demonstrated that higher SOFA scores are associated with poorer outcomes in these patients. However, the predictive value of the SOFA score for acute kidney injury (AKI), a common complication of diabetic ketoacidosis (DKA), remains uncertain.

View Article and Find Full Text PDF

A female patient in middle childhood was diagnosed with coarctation of the aorta at one month of age and underwent a successful cortectomy. At 11 years old, she developed re-coarctation, which was managed through interventional cardiology. Shortly after the procedure, she experienced a sudden and severe clinical decline, presenting with hypoperfusion of the lower extremities, gastrointestinal bleeding, acute kidney injury, and pancreatitis.

View Article and Find Full Text PDF

Donor-derived cell-free DNA in chronic lung allograft dysfunction phenotypes: a pilot study.

Front Transplant

December 2024

Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium.

Long-term survival after lung transplantation is limited due to chronic lung allograft dysfunction (CLAD), which encompasses two main phenotypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Donor-derived cell-free DNA (dd-cfDNA) is a biomarker for (sub)clinical allograft injury and could be a tool for monitoring of lung allograft health across the (pre)clinical spectrum of CLAD. In this proof-of-concept study, we therefore assessed post-transplant plasma dd-cfDNA levels in 20 CLAD patients (11 BOS and 9 RAS) at three consecutive time points free from concurrent infection or acute rejection, during stable condition, preclinical CLAD, and established CLAD ( = 3 × 20 samples).

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!