Zeolites and mesoporous silicas are porous materials with important applications in catalysis, gas storage, and separation. Zeolite crystals form in the presence of cationic surfactants that act as structure directing agents (SDAs). The way SDAs control the nucleation and polymorphs selection in zeolites is not fully understood. The formation of mesoporous silica is templated by liquid crystalline mesophases that result from frustrated attraction between silicates and long-chain SDAs. Experiments indicate that surfactants C H(CH)N with n > 6 yield mesoporous silicas, and the one with n = 6 produces a zeolite. This suggests that the driving force toward mesophase formation is also present for small organocations, but is overcome by the ability of silica to wrap a crystal lattice around them. Here we use molecular dynamics simulations to investigate whether the existence of metastable mesophases can play a role in the nucleation and polymorph selection of zeolitic crystals. As a proof of concept, we investigate the phase behavior of simple mesogenic mixtures of SDAs and a network former T that favors tetracoordinated crystals. We represent the network-former T by Stillinger-Weber models of water and silicon, in lieu of silica, because a computationally efficient silica potential that would allow for the spontaneous nucleation of zeolites in molecular dynamics simulations is not yet available. The mixtures of T and SDA produce a rich phase diagram that encompasses the sII clathrate and at least six zeolites, including sigma-2 (SGT). We find that the nucleation of SGT is not assisted by a mesophase. The nucleation of the other five zeolites of this study, however, is facilitated by the existence of metastable mesophases that decrease the nucleation barriers and direct the selection of the crystal polymorph. Together with the experimental support for mesophases in mixtures of silicates and SDAs, our results for model systems suggest that metastable mesophases could play a prominent role in promoting the nucleation and polymorph selection of some zeolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b06664 | DOI Listing |
AAPS PharmSciTech
December 2024
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France.
Hypothesis: Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed.
View Article and Find Full Text PDFChemistry
September 2024
Institute for Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
Two star-shaped mesogens with a (meso-tetraphenylporphinato) zinc (II) core and bithiophene conjugated arms with 3,4,5-trisdodecyloxyphenyl periphery were synthesized. One of these molecules was decorated with four fullerenes via an aliphatic spacer. This is the sterically overcrowded compound with an octapodal morphology.
View Article and Find Full Text PDFPlanta
July 2023
Komarov Botanical Institute, Popov St. 2, 197376, St. Petersburg, Russia.
Our findings suggest a reconsideration of pollen wall ontogeny process, entailing examination of physical factors, which enable a new understanding of exine developmental processes as self-formation. The pollen wall, the most complex cell wall in plants, is especially interesting as a model of ontogeny in miniature. By a detailed study of each developmental stage of Campanula rapunculoides pollen wall, we aimed to understand the establishment of complex pollen walls and the underlying developmental mechanisms.
View Article and Find Full Text PDFMolecules
August 2022
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
The boron carbide (BC) nanoparticles doping mesophase pitch (MP) was synthesized by the in-situ doping method with tetrahydrofuran solvent, and the corresponding MP-based carbon fibers (CFs) were successfully prepared through the melt-spinning, stabilization, carbonization and graphitization processes. The structural evolution and properties of boron-containing pitches and fibers in different processes were investigated for exploring the effect of BC on mechanical, electrical and thermal properties of CFs. The results showed that the BC was evenly dispersed in pitch fibers to provide active sites of oxygen, resulting in a homogeneous stabilization and ameliorating the split-ting microstructures of CFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!