We present a pilot case using an innovative fusion of echocardiogram and MRI achieved with a MATLAB-based imaging programme to explore the feasibility of this imaging strategy in the functional and anatomic assessment of a patient with repaired tetralogy of Fallot requiring pulmonary valve intervention. Echocardiogram and MRI neutralises the disadvantages and limitations of each individual imaging modality and yields important anatomic and haemodynamic information crucial to the treatment decision-making process. Future image fusion strategies can apply to three-dimensional images and image-directed therapy for CHD.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1047951118001749DOI Listing

Publication Analysis

Top Keywords

innovative fusion
8
functional anatomic
8
anatomic assessment
8
echocardiogram mri
8
echocardiographic mri
4
mri innovative
4
fusion functional
4
assessment strategy
4
strategy chd
4
chd pilot
4

Similar Publications

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.

View Article and Find Full Text PDF

MonoSeg: An Infrared UAV Perspective Vehicle Instance Segmentation Model with Strong Adaptability and Integrity.

Sensors (Basel)

January 2025

National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.

Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.

View Article and Find Full Text PDF

Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net).

View Article and Find Full Text PDF

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!