Lithium-ion batteries have the highest energy density among practical secondary batteries and are widely used for electronic devices, electric vehicles, and even stationary energy-storage systems. Along with the expansion of demand and applications, the concern about resources of lithium and cobalt is growing. Therefore, secondary batteries composed of abundant elements are required to complement lithium-ion batteries. In recent years, the development of potassium-ion batteries has attracted much attention, especially for large-scale energy storage. In order to realize potassium-ion batteries, various compounds are proposed and investigated as positive electrode materials, including layered transition-metal oxides, Prussian blue analogues, and polyanionic compounds. This article offers a review of polyanionic compounds which are typically composed of abundant elements and expected high operating potential. Furthermore, we deliver our new results to partially compensate for lack of studies and provide a future perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.201800143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!