Bacterial nucleotidyl cyclase toxins are potent virulence factors that upon entry into eukaryotic cells are stimulated by endogenous cofactors to catalyze the production of large amounts of 3'5'-cyclic nucleoside monophosphates. The activity of the effector ExoY from is stimulated by the filamentous form of actin (F-actin). Utilizing yeast phenotype analysis, site-directed mutagenesis, functional biochemical assays, and confocal microscopy, we demonstrate that the last nine amino acids of the C terminus of ExoY are crucial for the interaction with F-actin and, consequently, for ExoY's enzymatic activity and toxicity in a yeast model. We observed that isolated C-terminal sequences of ExoY that had been fused to a carrier protein bind to F-actin and that synthetic peptides corresponding to the extreme ExoY C terminus inhibit ExoY enzymatic activity and compete with the full-length enzyme for F-actin binding. Interestingly, we noted that various isolates of the PA14 family, including highly virulent strains, harbor ExoY variants with a mutation altering the C terminus of this effector. We found that these naturally occurring ExoY variants display drastically reduced enzymatic activity and toxicity. Our findings shed light on the molecular basis of the ExoY-F-actin interaction, revealing that the extreme C terminus of ExoY is critical for binding to F-actin in target cells and that some isolates carry C-terminally mutated, low-activity ExoY variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314138 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.003784 | DOI Listing |
Pharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFVirulence
December 2025
Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea.
(APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Due to their ease of synthesis and large specific surface area, Ni(OH) nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH) nanosheets, including NiO/Ni(OH)@NF and (MNi)O/Ni(OH)@NF (M = Co, Fe, or Cr), are successfully synthesized the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte.
View Article and Find Full Text PDFRNA Biol
January 2025
Institute for Biochemistry, Leipzig University, Leipzig, Germany.
tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!