End-to-End syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine.

Comput Methods Programs Biomed

Institute of Linguistics, Chinese Academy of Social Sciences, Beijing 100732, China; China Multilingual and Multimodal Corpora and Big Data Research Centre, Beijing 100089, China. Electronic address:

Published: June 2019

Background And Objective: Yin and Yang, two concepts adapted from classical Chinese philosophy, play a diagnostic role in Traditional Chinese Medicine (TCM). The Yin and Yang in harmonious balance indicate health, whereas imbalances to either side indicate unhealthiness, which may result in diseases. Yin-yang disharmony is considered to be the cause of pathological changes. Syndrome differentiation of yin-yang is crucial to clinical diagnosis. It lays a foundation for subsequent medical judgments, including therapeutic methods, and formula, among many others. However, because of the complexities of the mechanisms and manifestations of disease, it is difficult to exactly point out which one, yin or yang, is disharmonious. There has been inadequate research conducted on syndrome differentiation of yin and yang from a computational perspective. In this study, we present a computational method, viz. an end-to-end syndrome differentiation of yin deficiency and yang deficiency.

Methods: Unlike most previous studies on syndrome differentiation, which use structured datasets, this study takes unstructured texts in medical records as its inputs. It models syndrome differentiation as a task of text classification. This study experiments on two state-of-the-art end-to-end algorithms for text classification, i.e. a classic convolutional neural network (CNN) and fastText. These two systems take the n-grams of several types of tokens as their inputs, including characters, terms, and words.

Results: When evaluated on a data set with 7326 modern medical records in TCM, it is observed that CNN and fastText generally give rise to comparable performances. The best accuracy rate of 92.55% comes from the system taking inputs as raw as n-grams of characters. It implies that one can build at least a moderate system for the differentiation of yin deficiency and yang deficiency even if he has no glossary or tokenizer at hand.

Conclusions: This study has demonstrated the feasibility of using end-to-end text classification algorithms to differentiate yin deficiency and yang deficiency on unstructured medical records.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2018.10.011DOI Listing

Publication Analysis

Top Keywords

syndrome differentiation
24
differentiation yin
16
yin deficiency
16
deficiency yang
16
yin yang
16
yang deficiency
12
medical records
12
text classification
12
end-to-end syndrome
8
yin
8

Similar Publications

Purpose: Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by the narrowing of arteries at the brain's base. While cerebral angiography is the gold standard for diagnosis, high-resolution vessel wall magnetic resonance imaging (VW-MRI) has recently emerged as a non-invasive diagnostic tool. This systematic review aims to provide insights into the role of VW-MRI in enhancing the diagnosis and management of MMD.

View Article and Find Full Text PDF

Differences in Blood and Cerebrospinal Fluid Between Parkinson's Disease and Related Diseases.

Cell Mol Neurobiol

December 2024

Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

It is difficult to distinguish Parkinson's disease (PD) in the early stage from those of various disorders including atypical Parkinson's syndrome (APS), vascular parkinsonism (VP), and even essential tremor (ET), because of the overlap of symptoms. Other, more challenging problems will arise when Parkinson's disease develops into Parkinson's disease dementia (PDD) in the middle and late stages. At this time, the differential diagnosis of PDD and DLB becomes thorny.

View Article and Find Full Text PDF

Pediatric Meningeal Diseases: What Radiologists Need to Know.

Tomography

December 2024

Department of Radiology, Nemours Children's Health, 1600 Rockland Rd., Wilmington, DE 19803, USA.

Evaluating altered mental status and suspected meningeal disorders in children often begins with imaging, typically before a lumbar puncture. The challenge is that meningeal enhancement is a common finding across a range of pathologies, making diagnosis complex. This review proposes a categorization of meningeal diseases based on their predominant imaging characteristics.

View Article and Find Full Text PDF

Whey fermentation could produce bioactive substances with immunomodulatory effects, metabolic syndrome modulation, and antioxidant properties, thereby imparting functional characteristics to products and facilitating the development of novel foods with health-promoting potential. A non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS) was employed to investigate changes in the metabolite profiles of whey fermented by strain KM812 over varying fermentation durations. The findings demonstrated a progressive enrichment of metabolites over time.

View Article and Find Full Text PDF

The Anti-Inflammatory Roles of Vitamin D for Improving Human Health.

Curr Issues Mol Biol

November 2024

Department of Family Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey.

Vitamin D receptors (VDRs) are present in almost all cells of the immune system, including B cells, T cells, NK (Natural Killer) cells, dendritic cells, and monocytes, as well as the epithelial cells of many organs such as the intestine, pancreas, prostate, lungs, and cardiomyocytes. In addition, some immune cells, including dendritic cells, macrophages, and B and T cells, can synthesize calcitriol by expressing 1α-hydroxylase. Upon binding to VDRs, vitamin D (Vit D) regulates the expression of genes involved in immune responses, including those encoding for cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!