Multiline slot machines encourage continued play through 'losses disguised as wins' (LDWs), outcomes in which the money returned is less than that wagered. Individuals with gambling problems may be susceptible to this game feature. The cognitive and neurobiological mechanisms through which LDWs act are unknown. In a novel rat operant task, animals chose between a 'certain' lever, which always delivered two sugar pellets, or an 'uncertain' lever, resulting in four sugar pellets on 50% of trials. LDWs were then introduced as a return of three sugar pellets on 30-40% of uncertain rewarded trials. For half the rats, winning outcomes were paired with audiovisual feedback (cues). In a second study, the basolateral amygdala (BLA) was inactivated during initial presentation of LDWs. While LDWs shifted most rats' choice toward the certain lever, a subgroup of LDW vulnerable rats continued to choose the uncertain option, when the reward rate diminished. This profile of LDW vulnerability was reproduced after inactivating the BLA. Persistent choice of uncertain outcomes despite lower reward rates may reflect impaired functioning within the BLA. Future work using this model may provide insight into the neurobiological mechanisms contributing to the motivational properties of LDWs and their contribution to problematic gambling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FBP.0000000000000455 | DOI Listing |
J Pharm Sci
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:
Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Health, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
The objective of this study is to enhance the capacity of struvite-phosphate forming reactor utilized in the production of phosphorus fertilizer from wastewater collected from mobile toilets, characterized by phosphorus (P) concentrations of 5.0 ± 1.1 g/l.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.
The present study aimed to determine the effect of material modification by hot water extraction (HWE) on the compaction efficiency of shredded stalks in the pellet production process. Samples were prepared to differ in the number of HWE cycles: HWE I was subjected to a single cycle, HWE II was subjected to two cycles, and HWE III was subjected to three cycles and unmodified material. An analysis of the compaction process was carried out to evaluate the effect of HWE on density and energy consumption.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India. Electronic address:
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!