Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coastal wetlands are globally important sinks of organic carbon (C). However, to what extent wetland C cycling will be affected by accelerated sea-level rise (SLR) and saltwater intrusion is unknown, especially in coastal peat marshes where water flow is highly managed. Our objective was to determine how the ecosystem C balance in coastal peat marshes is influenced by elevated salinity. For two years, we made monthly in situ manipulations of elevated salinity in freshwater (FW) and brackish water (BW) sites within Everglades National Park, Florida, USA. Salinity pulses interacted with marsh-specific variability in seasonal hydroperiods whereby effects of elevated pulsed salinity on gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) were dependent on marsh inundation level. We found little effect of elevated salinity on C cycling when both marsh sites were inundated, but when water levels receded below the soil surface, the BW marsh shifted from a C sink to a C source. During these exposed periods, we observed an approximately threefold increase in CO efflux from the marsh as a result of elevated salinity. Initially, elevated salinity pulses did not affect Cladium jamaicense biomass, but aboveground biomass began to be significantly decreased in the saltwater amended plots after two years of exposure at the BW site. We found a 65% (FW) and 72% (BW) reduction in live root biomass in the soil after two years of exposure to elevated salinity pulses. Regardless of salinity treatment, the FW site was C neutral while the BW site was a strong C source (-334 to -454 g C·m ·yr ), particularly during dry-down events. A loss of live roots coupled with annual net CO losses as marshes transition from FW to BW likely contributes to the collapse of peat soils observed in the coastal Everglades. As SLR increases the rate of saltwater intrusion into coastal wetlands globally, understanding how water management influences C gains and losses from these systems is crucial. Under current Everglades' water management, drought lengthens marsh dry-down periods, which, coupled with saltwater intrusion, accelerates CO loss from the marsh.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!