Thirty clues to the exceptional diversification of flowering plants.

Ann Bot

Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Del. Coyoacán, Ciudad de México, México.

Published: February 2019

Background And Aims: As angiosperms became one of the megadiverse groups of macroscopic eukaryotes, they forged modern ecosystems and promoted the evolution of extant terrestrial biota. Unequal distribution of species among lineages suggests that diversification, the process that ultimately determines species richness, acted differentially through angiosperm evolution.

Methods: We investigate how angiosperms became megadiverse by identifying the phylogenetic and temporal placement of exceptional radiations, by combining the most densely fossil-calibrated molecular clock phylogeny with a Bayesian model that identifies diversification shifts among evolutionary lineages and through time. We evaluate the effect of the prior number of expected shifts in the phylogenetic tree.

Key Results: Major diversification increases took place over 100 Ma, from the Early Cretaceous to the end of the Paleogene, and are distributed across the angiosperm phylogeny. The long-term diversification trajectory of angiosperms shows moderate rate variation, but is underlain by increasing speciation and extinction, and results from temporally overlapping, independent radiations and depletions in component lineages.

Conclusions: The identified deep time diversification shifts are clues to the identification of ultimate drivers of angiosperm megadiversity, which probably involve multivariate interactions among intrinsic traits and extrinsic forces. An enhanced understanding of angiosperm diversification will involve a more precise phylogenetic location of diversification shifts, and integration of fossil information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377106PMC
http://dx.doi.org/10.1093/aob/mcy182DOI Listing

Publication Analysis

Top Keywords

diversification shifts
12
diversification
8
angiosperms megadiverse
8
thirty clues
4
clues exceptional
4
exceptional diversification
4
diversification flowering
4
flowering plants
4
plants background
4
background aims
4

Similar Publications

The São Paulo state citrus belt in Brazil is a major citrus production region. Since at least 1957, citrus plantations in this region have been affected by citrus canker, an economically damaging disease caused by subsp. ().

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how intercontinental movements of certain plant lineages (Hydrangeaceae and Loasaceae) may promote ecological opportunities and species diversity.
  • Researchers reconstructed a phylogeny using molecular data and analyzed speciation rates, finding that while some clades showed increased diversification, it wasn't linked to new continental colonization.
  • The findings suggest that climate change in the Miocene played a more significant role in species diversification rather than dispersal across continents, indicating that changes in habitats drove evolutionary changes instead of location shifts.
View Article and Find Full Text PDF

Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.

View Article and Find Full Text PDF

How gene expression evolves to enable divergent ecological adaptation and how changes in gene expression relate to genomic architecture are pressing questions for understanding the mechanisms enabling adaptation and ecological speciation. Furthermore, how plasticity in gene expression can both contribute to and be affected by the process of ecological adaptation is crucial to understanding gene expression evolution, colonisation of novel niches and response to rapid environmental change. Here, we investigate the role of constitutive and plastic gene expression differences between host races, or host-specific ecotypes, of the peacock fly Tephritis conura, a thistle bud specialist.

View Article and Find Full Text PDF

Comparative Evolutionary Genomics Reveals Genetic Diversity and Differentiation in .

Genes (Basel)

November 2024

Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City 501-1194, Gifu, Japan.

Background/objectives: is the pathogenic anaerobe most commonly isolated from intra-abdominal infections, abscesses, and blood. Despite its clinical importance, research on its pan-genome-scale evolution is still limited.

Methods: Herein, we analyzed the pan-genome architecture of 374 strains to explore their intra-species genomic diversity and evolutionary patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!