Presynaptic neuronal activity requires the localization of thousands of proteins that are typically synthesized in the soma and transported to nerve terminals. Local translation for some dendritic proteins occurs, but local translation in mammalian presynaptic nerve terminals is difficult to demonstrate. Here, we show an essential ribosomal component, 5.8S rRNA, at a glutamatergic nerve terminal in the mammalian brain. We also show active translation in nerve terminals, in situ, in brain slices demonstrating ongoing presynaptic protein synthesis in the mammalian brain. Shortly after inhibiting translation, the presynaptic terminal exhibits increased spontaneous release, an increased paired pulse ratio, an increased vesicle replenishment rate during stimulation trains, and a reduced initial probability of release. The rise and decay rates of postsynaptic responses were not affected. We conclude that ongoing protein synthesis can limit excessive vesicle release which reduces the vesicle replenishment rate, thus conserving the energy required for maintaining synaptic transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231766PMC
http://dx.doi.org/10.7554/eLife.36697DOI Listing

Publication Analysis

Top Keywords

mammalian brain
12
protein synthesis
12
nerve terminals
12
local translation
8
vesicle replenishment
8
replenishment rate
8
active presynaptic
4
presynaptic ribosomes
4
mammalian
4
ribosomes mammalian
4

Similar Publications

Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities.

J Inherit Metab Dis

January 2025

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.

Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.

View Article and Find Full Text PDF

Long-term training enables professional athletes to develop concentrated and efficient neural network organizations for specific tasks. This study used functional near-infrared spectroscopy to investigate task performance, brain functional characteristics, and their relationships in footballers during sport-specific motor-cognitive processes. Twenty-four footballers (athlete group, with 18 remaining of good signal quality) and 20 non-footballers (control group, with 16 remaining) completed four tasks: a single task (trigger buttons corresponding to the appearance direction of teammates with kicking actions), an N-back direction task, a dual task, and an N-back digit task.

View Article and Find Full Text PDF

Single-cell synaptome mapping: its technical basis and applications in critical period plasticity research.

Front Neural Circuits

December 2024

Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.

Our brain adapts to the environment by optimizing its function through experience-dependent cortical plasticity. This plasticity is transiently enhanced during a developmental stage, known as the "critical period," and subsequently maintained at lower levels throughout adulthood. Thus, understanding the mechanism underlying critical period plasticity is crucial for improving brain adaptability across the lifespan.

View Article and Find Full Text PDF

Introduction: Falls are the primary cause of unintentional fatalities among individuals aged 65 and older. Enhancing research on fall prevention among older adults is an urgent priority. Consequently, this study aims to investigate the prevalence and influencing factors of falls among community-dwelling older adults in Guangzhou, China, with a particular emphasis on the impact of family functioning.

View Article and Find Full Text PDF

Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of .

Front Immunol

December 2024

Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!