Polymer-Directed Growth of Plasmonic Aluminum Nanocrystals.

J Am Chem Soc

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University, Changchun 130012 , P.R. China.

Published: November 2018

The challenge of controllable chemical synthesis of aluminum nanocrystals (Al NCs) has been met with only limited success. A major barrier is the absence of effective ligands to control the nucleation and growth of Al NCs. Here we demonstrate the size- and shape-controlled synthesis of monodisperse Al NCs using a polymer ligand, cumyl dithiobenzoate-terminated polystyrene (CDTB-PS). Density functional theory (DFT) calculations indicate that CDTB-PS shows selective absorption on Al{100} facets, inducing the formation of nanocubes and trigonal bipyramids. An excess of CDTB-PS, however, decreases the supersaturation of Al atoms, leading to the formation of {111} facet-terminated octahedral and triangular plates. The concentration of the catalyst, titanium (IV) isopropoxide, determines the size of Al NCs by controlling the number of seeds. Depending on nanoparticle size, the solutions of Al NCs possess distinct colors, a characteristic feature of plasmonic nanomaterials. This robust and controlled chemical synthesis of Al NCs lays a foundation for Al as a sustainable plasmonic material for current and future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08937DOI Listing

Publication Analysis

Top Keywords

aluminum nanocrystals
8
chemical synthesis
8
ncs
6
polymer-directed growth
4
growth plasmonic
4
plasmonic aluminum
4
nanocrystals challenge
4
challenge controllable
4
controllable chemical
4
synthesis aluminum
4

Similar Publications

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!