Arylguanidines, depending upon their aromatic substitution pattern, display varying actions at 5-HT receptors (e.g., partial agonist, agonist, superagonist). Here, we demonstrate that conformational constraint of these agents as dihydroquinazolines (such as A6CDQ; 1) results in their conversion to 5-HT receptor antagonists. We examined the structure-activity relationships of 1. Replacement/removal of any of the guanidinium nitrogen atoms of 1 resulted in decreased affinity. All three nitrogen atoms of 1 are necessary for optimal binding affinity at 5-HT receptors. Introduction of substituents as small as an N2-methyl group abolishes affinity. The results are consistent with homology modeling/docking studies and binding data from site-directed mutagenesis studies. Introducing a "methylene bridge" to the arylguanidine structure, regardless of its functional activity, results in a 5-HT receptor antagonist.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.8b00431DOI Listing

Publication Analysis

Top Keywords

5-ht receptor
12
"methylene bridge"
8
receptor antagonists
8
5-ht receptors
8
nitrogen atoms
8
5-ht
5
bridge" 5-ht
4
antagonists conformationally
4
conformationally constrained
4
constrained phenylguanidines
4

Similar Publications

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

December 2024

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, is known for its potential therapeutic effects on central nervous system (CNS) disorders. This study investigates the effects of chronic CBD administration on depressive and cognitive alterations induced by social isolation in male C57BL/6 mice. The experimental design involved adult mice subjected to either group housing or 12 weeks of social isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!