Understanding Film-To-Stripe Transition of Conjugated Polymers Driven by Meniscus Instability.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign, 600 S. Mathews Avenue , Urbana , Illinois 61801 , United States.

Published: November 2018

Meniscus instability during meniscus-guided solution coating and printing of conjugated polymers has a significant impact on the deposit morphology and the charge-transport characteristics. The lack of quantitative investigation on meniscus-instability-induced morphology transition for conjugated polymers hindered the ability to precisely control conjugated polymer deposition for desired applications. Herein, we report a film-to-stripe morphology transition caused by stick-and-slip meniscus instability during solution coating seen in multiple donor-acceptor polymer systems. We observe the coexistence of film and stripe morphologies at the critical coating speed. Surprisingly, higher charge-carrier mobility is measured in transistors fabricated from stripes despite their same deposition condition as the films at the critical speed. To understand the origin of the morphology transition, we further construct a generalizable surface free energy model to validate the hypothesis that the morphology transition occurs to minimize the system surface free energy. As the system surface free energy varies during a stick-and-slip cycle, we focus on evaluating the maximum surface free energy at a given condition, which corresponds to the sticking state right before slipping. Indeed, we observe the increase of the maximum system surface free energy with the increase in coating speed prior to film-to-stripe morphology transition and an abrupt drop in the maximum system surface free energy post-transition when the coating speed is further increased, which is associated with the reduced meniscus length during stripe deposition. Such an energetic change originates from the competition between pinning and depinning forces on a partial wetting substrate which underpins the film-to-stripe transition. This work establishes a quantitative approach for understanding meniscus-instability-induced morphology transition during solution coating. The mechanistic understanding may further facilitate the use of meniscus instability for lithography-free patterning or to suppress instability for highly homogeneous thin film deposition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b13790DOI Listing

Publication Analysis

Top Keywords

morphology transition
24
surface free
24
free energy
24
meniscus instability
16
system surface
16
conjugated polymers
12
solution coating
12
coating speed
12
transition
8
film-to-stripe transition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!