Measurement of antibiotic susceptibility at the level of single cells is important as it reveals the concentration of an antibiotic that leads to drug resistance in bacterial strains. To date, no solution for large-scale studies of antibiotic susceptibility at the single-cell level has been shown. Here, we present a method for production and separation of emulsions consisting of subnanoliter droplets that allows us to identify each emulsion by their spatial position in the train of emulsions without chemical barcoding. The emulsions of droplets are separated by a third immiscible phase, thus forming large compartments-tankers-each filled with an emulsion of droplet reactors. Each tanker in a train can be set under different reaction conditions for hundreds or thousands of replications of the same reaction. The tankers allow for long term incubation - needed to check for growth of bacteria under a screen of conditions. We use microfluidic tankers to analyze susceptibility to cefotaxime in ca. 1900 replications for each concentration of the antibiotic in one experiment. We test cefotaxime susceptibility for different initial concentrations of bacteria, showing the inoculum effect down to the level of single cells for more than a hundred single-cell events per tanker. Lastly, we use tankers to observe the formation of aggregates of bacteria in the presence of cefotaxime in the increasing concentration of the antibiotic. The microfluidic tankers allow for facile studies of the inoculum effect and antibiotic susceptibility, and constitute an attractive, label-free screening method for a variety of other experiments in chemistry and biology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8lc00916cDOI Listing

Publication Analysis

Top Keywords

antibiotic susceptibility
16
concentration antibiotic
12
susceptibility single-cell
8
single-cell level
8
level single
8
single cells
8
tankers allow
8
microfluidic tankers
8
antibiotic
7
susceptibility
6

Similar Publications

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including , , , , and (), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC and MIC values highlighting its potential as an effective antimicrobial agent.

View Article and Find Full Text PDF

The emergence of hypervirulent and carbapenem-resistant hypermucoviscous strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024.

View Article and Find Full Text PDF

Pneumonia is a common respiratory infection affecting individuals of all ages, with a significantly higher incidence among the elderly. As the aging population grows, pneumonia is expected to become an increasingly critical health concern. In non-institutionalized elderly individuals, the annual incidence ranges from 25 to 44 per 1000, approximately four times higher than in those under 65.

View Article and Find Full Text PDF

Brain abscesses are invasive infections of the central nervous system with a high level of treatment complexity especially in pediatric patients. Here, we describe a 3-month-old infant with multiple brain abscesses caused by methicillin-susceptible (MSSA). The patient was initially treated with empirical antibiotics (ceftriaxone, metronidazole, vancomycin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!