The Arctic region is warming two to three times faster than the global mean, intensifying the hydrological cycle in the high north. Both enhanced regional evaporation and poleward moisture transport contribute to a 50-60% increase in Arctic precipitation over the 21 century. The additional precipitation is diagnosed to fall primarily as rain, but the physical and dynamical constraints governing the transition to a rain-dominated Arctic are unknown. Here we use actual precipitation, snowfall, rainfall output of 37 global climate models in standardised 21-century simulations to demonstrate that, on average, the main contributor to additional Arctic (70-90°N) rainfall is local warming (~70%), whereas non-local (thermo)dynamical processes associated with precipitation changes contribute only 30%. Surprisingly, the effect of local warming peaks in the frigid high Arctic, where modest summer temperature changes exert a much larger effect on rainfall changes than strong wintertime warming. This counterintuitive seasonality exhibits steep geographical gradients, however, governed by non-linear changes in the temperature-dependent snowfall fraction, thereby obscuring regional-scale attribution of enhanced Arctic rainfall to climate warming. Detailed knowledge of the underlying causes behind Arctic snow/rainfall changes will contribute to more accurate assessments of the (possibly irreversible) impacts on hydrology/run-off, permafrost thawing, ecosystems, sea ice retreat, and glacier melt.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207739 | PMC |
http://dx.doi.org/10.1038/s41598-018-34450-3 | DOI Listing |
Sci Total Environ
January 2025
Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).
View Article and Find Full Text PDFMicroorganisms
January 2025
Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy.
() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
Arctic precipitation plays a crucial role in shaping the surface mass balance of Arctic sea ice and has wide-ranging impacts on local climate, ecosystems, and global sea level dynamics. With the Arctic undergoing warming trends, historical data and climate models indicate a shift from primarily snowfall to a rise in liquid and mixed forms of precipitation. This study tried to explain the microphysical characteristics and atmospheric conditions associated with different forms of precipitation and their transitions.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Plant Sciences, University of Bern, Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
Abies alba Mill. is a prominent European tree species predominantly inhabiting cool and humid montane environments. However, paleoecological evidence reveals that during the Eemian and mid-Holocene, A.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
Forest age structures have been substantially affected by natural disturbances and anthropogenic activities worldwide. Their changes can significantly influence local and nonlocal climate through both the biogeochemical and biophysical processes. However, numerous studies have focused on the biogeochemical effect of forest age changes whereas the biophysical effect has received far less attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!