Environmental fluctuations are ubiquitous and thus essential for the study of adaptation. Despite this, genome evolution in response to environmental fluctuations -and more specifically to the degree of environmental predictability- is still unknown. Saline lakes in the Mediterranean region are remarkably diverse in their ecological conditions, which can lead to divergent local adaptation patterns in the inhabiting aquatic organisms. The facultatively sexual rotifer Brachionus plicatilis shows diverging local adaptation in its life-history traits in relation to estimated environmental predictability in its habitats. Here, we used an integrative approach -combining environmental, phenotypic and genomic data for the same populations- to understand the genomic basis of this diverging adaptation. Firstly, a novel draft genome for B. plicatilis was assembled. Then, genome-wide polymorphisms were studied using genotyping by sequencing on 270 clones from nine populations in eastern Spain. As a result, 4,543 high-quality SNPs were identified and genotyped. More than 90 SNPs were found to be putatively under selection with signatures of diversifying and balancing selection. Over 140 SNPs were correlated with environmental or phenotypic variables revealing signatures of local adaptation, including environmental predictability. Putative functions were associated to most of these SNPs, since they were located within annotated genes. Our results reveal associations between genomic variation and the degree of environmental predictability, providing genomic evidence of adaptation to local conditions in natural rotifer populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207753 | PMC |
http://dx.doi.org/10.1038/s41598-018-34188-y | DOI Listing |
Rapid urbanization and escalating climate crises place cities at the critical juncture of environmental and public health action. Urban areas are home to more than half of the global population, contributing ~ 75% of global greenhouse gas emissions. Structured surveys were completed by 191 leaders in city governments and civil society from 118 cities in 52 countries (February-April 2024).
View Article and Find Full Text PDFJ Robot Surg
January 2025
Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
The Hugo RAS system is characterized by its multimodular design, which leads to an increased docking effort. Exact data for docking time and the learning curve is missing. We describe for the first time the use of a laser-guided cart positioning to reduce the docking time.
View Article and Find Full Text PDFJ Gen Intern Med
January 2025
VA Puget Sound Health Care System, Seattle, WA, USA.
Background: Prior research has shown that primary care clinicians (PCPs) spend a large portion of clinic visits on tasks within the electronic health record (EHR). However, no time allocation studies have been done in the Veterans Health Administration (VHA) and little is known about EHR time spent during virtual visits.
Objective: To estimate the proportion of clinician time spent working within the EHR during primary care visits at VHA clinics.
NPJ Precis Oncol
January 2025
Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
KRAS-specific inhibitors have shown promising antitumor effects, especially in non-small cell lung cancer, but limited efficacy in colorectal cancer (CRC) patients. Recent studies have shown that EGFR-mediated adaptive feedback mediates primary resistance to KRAS inhibitors, but the other resistance mechanisms have not been identified. In this study, we investigated intrinsic resistance mechanisms to KRAS inhibitors using patient-derived CRC cells (CRC-PDCs).
View Article and Find Full Text PDFCommun Biol
January 2025
The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway.
Pseudomonas aeruginosa is an emergent threat due to the antimicrobial resistance crisis. Bacteriophages (phages) are promising agents for phage therapy approaches against P. aeruginosa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!