Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Gait velocity and maximum walking distance are central parameters for measuring the success of rehabilitation of gait after a stroke. The goal of this study was to provide an overview of current evidence on the rehabilitation of gait after a stroke.
Methods: A systematic review of randomized, controlled trials was carried out using network meta-analysis. The primary endpoint was gait velocity; secondary end- points were the ability to walk, maximum walking distance, and gait stability. The following interventions were analyzed: no gait training, conventional gait training (reference category), training on a treadmill with or without body weight support, training on a treadmill with or without a speed paradigm, and electromechanically assisted gait training with end-effector or exoskeleton apparatus.
Results: The systematic search yielded 40 567 hits. 95 randomized, controlled trials involving a total of 4458 post-stroke patients were included in the meta-analysis. With respect to the primary endpoint of gait velocity, gait training assisted by end- effector apparatus led to significant improvement (mean difference [MD] = 0.16 m/s; 95% confidence interval [0.04; 0.28]). None of the other interventions improved gait velocity to any significant extent. With respect to one of the secondary endpoints, maximum walking distance, both gait training assisted by end-effector apparatus and treadmill training with body weight support led to significant improvement (MD = 47 m, [4; 90], and MD = 38 m, [4; 72], respectively). A network meta-analysis could not be performed with respect to the ability to walk (a different secondary endpoint) because of substantial inconsistencies in the data. The interventions did not differ significantly with respect to safety.
Conclusion: In comparison to conventional gait rehabilitation, gait training assisted by end-effector apparatus leads to a statistically significant and clinically relevant improvement in gait velocity and maximum walking distance after stroke, while treadmill training with body weight support leads to a statistically significant and clinically relevant improvement in maximum walking distance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224539 | PMC |
http://dx.doi.org/10.3238/arztebl.2018.0639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!