To find new higher fungicidal activities lead compounds and develop new eco-friendly agrochemicals, natural product phenazine-1-carboxylic acid (PCA) as scaffold, a series of 1,3,4-oxadiazol-2-yl thioether derivatives was synthesized and bio-assayed. The results reveal that most target compounds possessed moderate to good fungicidal activities against , and Compounds and exhibit more than 90% bioactivity against . The EC value of compounds and are 11.16 and 30.47 μM respectively, in particular, compound show equal activity against to PCA (10.49 μM). This result provides a valuable lead compound for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2018.1489389DOI Listing

Publication Analysis

Top Keywords

134-oxadiazol-2-yl thioether
8
thioether derivatives
8
phenazine-1-carboxylic acid
8
fungicidal activities
8
synthesis fungicidal
4
fungicidal activity
4
activity 134-oxadiazol-2-yl
4
derivatives phenazine-1-carboxylic
4
acid scaffold
4
scaffold find
4

Similar Publications

Design of ROS-Triggered Sesquiterpene Lactone SC Prodrugs as TrxR1 Covalent Inhibitors for the Treatment of Non-Small Cell Lung Cancer.

J Med Chem

January 2025

Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.

Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS.

View Article and Find Full Text PDF

Bimetallic Sulfides CrVS with Loosely Packed Structure: Exploring the Boundary of Conversion and Intercalation Sodium-Ion Storage Mechanism.

Nano Lett

January 2025

Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.

View Article and Find Full Text PDF

Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.

View Article and Find Full Text PDF

Elemental partitioning, morpho-physiological effects, genotoxicity, and health risk assessment associated with tomato (Solanum lycopersicum L.) grown in soil contaminated with mining tailings.

Environ Res

January 2025

Doctorado en Ciencias Ambientales, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero. Privada de Laurel 13, Col. El Roble, 39640, Acapulco, Guerrero, México; Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan, km 2.5, Iguala de la Independencia, Guerrero, México; Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, 62210, Cuernavaca, Morelos, México; Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, México; Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, 47600, Jalisco, México; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero. Ex-hacienda de San Juan Bautista, Taxco el Viejo, 40323, Taxco el Viejo, Guerrero, México. Electronic address:

This study explored the distribution of macronutrients (Ca, Mg, Na, K) and lithogenic (Ba, Cr, Ni, Mn, Fe) and mining-related (As, Pb, Cd, Cu, Zn) toxic metalloids and metals (TMMs) in tomato (Solanum lycopersicum L.), and its effects on plant development, productivity, genotoxicity, and human health, using a soil affected by mine tailings (AS) and an unaffected control soil (CS). The chemistry of soils reflected their mineralogy, and Fe-Ti oxides, sulfides and sulfosalts were found to be the most significant reservoirs of TMMs.

View Article and Find Full Text PDF

g-CN Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants.

Molecules

January 2025

Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!