AI Article Synopsis

  • EEG signals are used to record brain activity for diagnosing epilepsy, but manual inspection is often slow and inaccurate.
  • The paper proposes an automatic epilepsy detection method using two feature extraction techniques (LNGP and SWLNGP) combined with various machine learning algorithms, including ANN.
  • Results demonstrate that the LNGP and SWLNGP methods, particularly with an ANN classifier, provide higher accuracy than existing techniques, making them simple and effective for real-time epilepsy detection.

Article Abstract

Electroencephalographic (EEG) signal records the neuronal activity in the brain and it is used in the diagnosis of epileptic seizure activities. Human inspection of non-stationary EEG signal for diagnosing epilepsy is cumbersome, time-consuming and inaccurate. In this paper an effective automatic approach to detect epilepsy using two feature extraction techniques namely local neighbor gradient pattern (LNGP) and symmetrically weighted local neighbor gradient pattern (SWLNGP) are proposed. Extracted features are fed into machine learning algorithms like k-nearest neighbor (k-NN), quadratic linear discriminant analysis, support vector machine, ensemble classifier and artificial neural network (ANN) to classify the EEG signals. In this study, the classification performance for 17 different cases using 10-fold cross validation with the following classification problems are executed (i) healthy-ictal, (ii) interictal-ictal, (iii) healthy-interictal, (iv) seizure free-ictal and (v) healthy-interictal-ictal. The experimental result shows that in all the cases LNGP and SWLNGP attained higher classification accuracy using ANN. Further, the computational performance and the classification accuracy of the proposed methods are compared with the recently proposed techniques for epileptic detection. It shows that the performance of LNGP and SWLNGP method with ANN classifier are superior over other recently proposed techniques for the aforesaid problems. Hence, the proposed methods are simple, fast, reliable and easily implementable for real-time epileptic detection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-018-0697-9DOI Listing

Publication Analysis

Top Keywords

eeg signal
12
local neighbor
12
neighbor gradient
12
gradient pattern
12
lngp swlngp
8
classification accuracy
8
proposed methods
8
proposed techniques
8
epileptic detection
8
proposed
5

Similar Publications

Electroencephalographic signals are obtained by amplifying and recording the brain's spontaneous biological potential using electrodes positioned on the scalp. While proven to help find changes in brain activity with a high temporal resolution, such signals are contaminated by non-stationary and frequent artefacts. A plethora of noise reduction techniques have been developed, achieving remarkable performance.

View Article and Find Full Text PDF

EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

Extended performance of cognitively demanding tasks induces cognitive fatigue manifested with an overall deterioration of behavioral performance. In particular, long practice with tasks requiring impulse control is typically followed by a decrease in self-control efficiency, leading to performance instability. Here, we show that this is due to changes in activation modalities of key task-related areas occurring if these areas previously underwent intensive use.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!