Stiffness of the arterial wall and atherosclerotic plaque components is a determinant of the stress field within plaques, which has been suggested to be an indicator of plaque vulnerability. The diversity and inhomogeneous structure of atherosclerotic lesions complicate the characterization of plaque components. In the present study, stiffness of the arterial wall and atherosclerotic plaque components in human coronary arteries was examined in early and developed atherosclerotic lesions. The force-spectroscopy mode of the atomic force microscope and histological examination were used for determination of elastic moduli at specified locations within samples. Fibrous cap (E = 14.1 ± 3.8 kPa) showed lower stiffness than the fibrous tissue beneath the lipid pool (E = 17.6 ± 3.2 kPa). Calcification zones (E = 96.1 ± 18.8 kPa) and lipid pools (E = 2.7 ± 1.8 kPa) were the stiffest and softest components of atherosclerotic lesions, respectively. The increase of media stiffness (%44.8) and reduction of the elastic modulus of the internal elastic lamina (%28.9) was observed in coronary arteries. Moreover, significant differences were observed between the stiffness of medial layer in diseased parts and free-plaque segments in incomplete plaques of coronary arteries. Our results can be used for better understanding of remodeling mechanisms of the arterial wall with plaque development. Graphical abstract Stiffness alteration of the arterial wall and atherosclerotic plaque components with plaque development in coronary arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-018-1910-4 | DOI Listing |
Int J Med Microbiol
January 2025
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFJ Clin Med
January 2025
Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.
: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.
View Article and Find Full Text PDFLife (Basel)
January 2025
Clinical Laboratory of Radiology and Medical Imaging, "Sf. Apostol Andrei" County Emergency Hospital, 900591 Constanta, Romania.
Aortic arch anomalies represent a range of congenital vascular malformations resulting from disruptions in the typical embryological development of the aortic arch and its branches. These anomalies, which vary widely in their presentation, can lead to significant clinical symptoms depending on their structure and position. We report the case of a 75-year-old male with intermittent hypertension, palpitations, and episodic warmth in the upper body.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Coronary atherosclerosis (CAD) is characterized by arterial intima lipid deposition, chronic inflammation, and fibrous tissue proliferation, leading to arterial wall thickening and lumen narrowing. As the primary cause of coronary heart disease and acute coronary syndrome, CAD significantly impacts global health. Recent genetic studies have demonstrated CAD's polygenic and multifactorial nature, providing molecular insights for early diagnosis and risk assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!