The generation of adaptive immunity by vaccination is usually a prolonged process that requires multiple dosing over several months. Hence, vaccines are administered for disease prevention a relatively long time prior to possible infection as opposed to post-exposure prophylaxis, which typically requires rapid intervention such as antibiotic therapy. The emergence of pathogens resistant to common antibiotic treatments has prompted the search for alternative therapeutic strategies. We previously demonstrated that vaccination of mice with the F1 capsular antigen of elicits specific and effective yet, unexpectedly, rapid anti-plague immunity. Here, we show by applying genetic and immunological approaches that the F1 antigen is targeted by peritoneal innate-like B1b cells that generate a prompt T-independent (TI) anti-F1 humoral response. The rapid F1-mediated defense response was diminished in (Btk) mice in which B1 cell numbers and activity are limited. Binding of fluorophore-labeled F1 to peritoneal B1b cells was detected as soon as 6 h post vaccination, emphasizing the high speed of this process. By assessing the ability to achieve rapid immunity with monomerized F1, we show that the natural polymeric structure of F1 is essential for (i) rapid association with peritoneal B1b cells, (ii) early induction of anti-F1 titers and (iii) rapid TI immunity in the mouse model of bubonic plague. These observations shed new light on the potential of novel as well as well-known protective antigens in generating rapid immunity and could be implemented in the rational design of future vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195588PMC
http://dx.doi.org/10.1038/s41541-018-0087-zDOI Listing

Publication Analysis

Top Keywords

b1b cells
16
rapid immunity
12
capsular antigen
8
innate-like b1b
8
rapid
8
bubonic plague
8
peritoneal b1b
8
immunity
5
targeting capsular
4
antigen innate-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!