Variable training but not sleep improves consolidation of motor adaptation.

Sci Rep

BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.

Published: October 2018

How motor memory consolidates still remains elusive. Consolidation of motor skills has been shown to depend on periods of sleep. Conversely, motor adaptation during tasks not dependent on the hippocampus may not depend on sleep. Some research suggests that the training schedule affects the sleep dependency of motor adaptation tasks. Here, we investigated whether sleep differentially affects memory consolidation that depends on the training schedule. Healthy men were trained with their dominant, right hand on a force-field adaptation task and re-tested after an 11-h consolidation period involving overnight sleep (Sleep) or daytime wakefulness (Wake). Retesting included a transfer test of the non-dominant hand. Half of the subjects in each group adapted to different force-field magnitudes during training with low inter-trial force variability (Sleep-Blocked; Wake-Blocked), and the other half were trained with a high-variability schedule (Sleep-Random; Wake-Random). EEG was recorded during task execution and overnight polysomnography. Consolidation was comparable between Wake and Sleep groups, although performance changes over sleep correlated with sleep spindles nesting in slow-wave upstates. Higher training variability improved retest performance, including transfer learning, and these improvements correlated with higher alpha power in contralateral parietal areas. These enhanced consolidation effects might be fostered by feedback rather than feedforward mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206141PMC
http://dx.doi.org/10.1038/s41598-018-34225-wDOI Listing

Publication Analysis

Top Keywords

motor adaptation
12
sleep
10
consolidation motor
8
adaptation tasks
8
training schedule
8
consolidation
6
motor
5
variable training
4
training sleep
4
sleep improves
4

Similar Publications

Key shifts in frontoparietal network activity in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.

View Article and Find Full Text PDF

Hand movements frequently occur with speech. The extent to which the memories that guide co-speech hand movements are tied to the speech they occur with is unclear. Here, we paired the acquisition of a new hand movement with speech.

View Article and Find Full Text PDF

Patterns of neuronal synchrony in higher-order networks.

Phys Life Rev

December 2024

Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:

Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.

View Article and Find Full Text PDF

The Detrimental Effect of Stroke on Motor Adaptation.

Neurorehabil Neural Repair

January 2025

Department of Physical Therapy, University of Delaware, Newark, DE, USA.

Background: While it is evident that stroke impairs motor control, it remains unclear whether stroke impacts motor adaptation-the ability to flexibly modify movements in response to changes in the body and the environment. The mixed results in the literature may be due to differences in participants' brain lesions, sensorimotor tasks, or a combination of both.

Objective: We first sought to better understand the overall impact of stroke on motor adaptation and then to delineate the impact of lesion hemisphere and sensorimotor task on adaptation poststroke.

View Article and Find Full Text PDF

The study presents an intelligent, model-free current control strategy that eliminates the need for explicit plant models while efficiently reducing the effect of plant parameter perturbation. By employing a data-driven approach with fewer input features, the proposed scheme reduces the computational burden during training while maintaining high control performance. Unlike conventional model predictive current control (MPCC), which is computationally expensive because of solving optimization problems at each sample time, and requires precise plant models, the proposed method enhances system performance by addressing plant model discrepancies through data-driven techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!