NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited infection and viral replication in primary human hepatocytes with EC values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies The overall preclinical profile of NVR 3-778 predicts antiviral activity and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325219 | PMC |
http://dx.doi.org/10.1128/AAC.01734-18 | DOI Listing |
J Med Chem
October 2023
School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China.
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, we designed and synthesized five series of benzamide derivatives based on a multisite-binding strategy at the tolerant region and diversity modification in the solvent-exposed region. Among them, thioureidobenzamide compound exhibited significantly increased anti-HBV activity in HepAD38 (EC = 0.
View Article and Find Full Text PDFRSC Adv
September 2023
Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University 254 Phayathai Rd, Prathumwan Bangkok 10330 Thailand
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) are currently being evaluated in clinical trials as potential curative therapies for HBV. This study used computational modeling to provide insights into the binding characteristics between the HBV core protein and two pyrrole-scaffold inhibitors, JNJ-6379 and GLP-26, both in the CAM-Normal (CAM-N) series. Molecular dynamics simulations showed that the pyrrole inhibitors displayed similar general binding-interaction patterns to NVR 3-778, another CAM-N, with hydrophobic interactions serving as the major driving force.
View Article and Find Full Text PDFBioorg Chem
December 2022
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China. Electronic address:
Capsid assembly modulators (CAMs) represent a novel class of antiviral agents targeting hepatitis B virus (HBV) capsid to disrupt the assembly process. NVR 3-778 is the first CAM to demonstrate antiviral activity in patients infected with HBV. However, the relatively low aqueous solubility and moderate activity in the human body halted further development of NVR 3-778.
View Article and Find Full Text PDFMolecules
September 2022
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China.
Hepatitis B virus (HBV) capsid protein (Cp) is necessary for viral replication and the maintenance of viral persistence, having become an attractive target of anti-HBV drugs. To improve the water solubility of HBV capsid protein allosteric modulator (CpAM) NVR 3-778, a series of novel carboxylic acid and phosphate prodrugs were designed and synthesized using a prodrug strategy. In vitro HBV replication assay showed that these prodrugs maintained favorable antiviral potency (EC50 = 0.
View Article and Find Full Text PDFBioorg Chem
November 2022
School of Pharmacy, Weifang Medical University, Weifang, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. Electronic address:
Capsid assembly modulators (CAMs) have recently been revealed to be effective in blocking HBV replication. HBV capsid protein inhibitors reduce and ultimately eliminate HBV by inhibiting virus replication and blocking hepatocyte infection. Sulfonamides are synthetic functional groups in development of different kinds of drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!