The main objective of this paper is to present results of the research in the development of a specialized self-propagating high-temperature synthesis (SHS) technology for ferroalloy composites, as applied to steelmaking. The problem of creating such a production cycle has been solved by developing a new approach to the practical implementation of self-propagating high-temperature synthesis, as applied to metallurgy. The metallurgical variation of SHS is based on the use of different metallurgic alloys (including waste in the form of dust from ferroalloy production) as basic raw materials in the new process. Here, the process of synthesis by combustion is realized through exothermic exchange reactions. The process produces a composite, based on inorganic compositions with a bond of iron and/or alloy based on iron. It has been shown that in terms of the aggregate state of initial reagents, metallurgical SHS processes are either gasless or gas-absorbing. Combustion regimes significantly differ when realized in practice. To organize the metallurgical SHS process in weakly exothermic systems, different variations of the thermal trimming principle are used. In the present study, self-propagating high-temperature synthesis of ferrovanadium nitride, which is widely used in steel alloying, was investigated. It has been shown that the phase composition of the initial alloy has a profound impact on the regular patterns in ferrovanadium combustion in nitrogen and on the mechanism itself. During the nitriding of σ-(Fe-V), process activation is taking place. The activation is due to the transformation of the intermetallide into an α-solid solution, when the temperature of phase transition is reached (~1200 °C). The composite structure of the products of ferrovanadium is nitriding by the fusion of particles-droplets composed of molten Fe and solid VN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267210 | PMC |
http://dx.doi.org/10.3390/ma11112117 | DOI Listing |
Mechanochemical synthesis is an extremely useful strategy to reach thermoelectric materials due to its solvent-free one-step character, as the targeted thermoelectricity (TE) materials in a nanocrystalline format can be prepared by mere high-energy milling of elemental precursors. Nevertheless, the subsequent densification method (e.g.
View Article and Find Full Text PDFACS Omega
August 2024
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
The Chevrel phase compounds CuMoS, NiMoS, and FeMoS, synthesized by self-propagating high temperature synthesis, were evaluated as photocatalysts for visible light photocatalytic desulfurization. Investigations began with reflectance measurements from which absorbance spectra were calculated using the Kubelka-Munk transformation. The absorbance data was then used to create Tauc plots to find the direct and indirect bandgaps of the Chevrel phase compounds.
View Article and Find Full Text PDFHeliyon
July 2024
Advanced Materials Research Center, Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
Silicides with potential to form a protective silica layer have garnered considerable attention as engineering ceramic materials. This research investigates the influence of initial composition and mechanical activation on the synthesis performance and microstructure of products in the Ti-Si-Mo system. Several compositions, including Ti8Mo29Si63, Ti15Mo25Si60, Ti22Mo22Si56, Ti40Mo12Si48, Ti52Mo6Si42, Ti62.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Composite plates comprising a blend of rare earth neodymium-(Nd) doped M-type barium ferrite (BaM) with CNTs (carbon nanotubes) and polyethylene WERE synthesized through a self-propagating reaction and hot-pressing treatment. The plates' microscopic characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), thermo-gravimetric analysis (TGA), Raman, and scanning electron microscopy (SEM) analytical techniques. Their microwave absorption performance within the frequency range of 8.
View Article and Find Full Text PDFACS Omega
June 2024
Laboratory of Superelastic Biointerfaces, National Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!