Nitrapyrin is a nitrification inhibitor that is co-applied with nitrogen fertilizer in agroecosystems. There is limited information on the fate of nitrapyrin after it is applied to agricultural soils. Over the course of one year (March 2016 to June 2017), 192 water samples from seven streams across Iowa and Illinois were analyzed for nitrapyrin, its metabolite 6‑chloropicolinic acid (6‑CPA), and three widely used herbicides acetochlor, atrazine, and metolachlor. Additional environmental samples were collected and analyzed in spring 2017: 63 water samples from eight subsurface drains in Illinois, and 33 soil samples from a field in Iowa that received direct application of nitrapyrin. Nitrapyrin was detected in all seven streams (56% detection) with concentrations ranging from less than LOD to 1200 ng/L; 6‑CPA was detected in six of the seven streams (13% detection) with concentrations ranging from less than LOD to 13 ng/L. Nitrapyrin was detected in 10% of the subsurface drain samples with concentrations ranging from less than LOD to 12 ng/L; 6‑CPA was detected in six of the eight subsurface drains and in 33% of drain samples with concentrations ranging from less than LOD to 6 ng/L. Nitrapyrin was detected in 67% of the soil samples collected, and concentrations ranged from less than LOD to 42 ng/g. Generally, all three herbicides were detected more frequently and at higher concentrations than nitrapyrin in the streams, subsurface drains, and soils. The environmental fate of nitrapyrin after application is dominated by sorption to soil and off-field transport via leaching and overland flow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.09.387DOI Listing

Publication Analysis

Top Keywords

subsurface drains
16
concentrations ranging
16
ranging lod
16
nitrapyrin detected
12
nitrapyrin
10
agricultural soils
8
fate nitrapyrin
8
water samples
8
three herbicides
8
samples collected
8

Similar Publications

Microplastics (MPs) are ubiquitous in river and freshwater ecosystems. However, the hydraulic and hydrological mechanisms that regulate the activation and emissions of MPs from both the land surface and subsurface into rivers are not well understood. This study aims to quantify the instream MP concentration and MP load in a remote headwater catchment river (Taff Bargoed, Wales UK), which drains the UK's largest opencast coal mine (Ffos-y-fran), over a two-year period.

View Article and Find Full Text PDF

The Eastern Corn Belt (ECB) node of the Long-Term Agroecosystem Research (LTAR) network is representative of row crop agricultural production systems in the poorly drained, humid regions of the US Midwest and a significant focus for addressing water quantity and quality concerns affecting Lake Erie and the Gulf of Mexico. The objectives of this paper were to (1) present relevant background information and collection methodology, (2) provide summary analyses of measured data, and (3) provide details for accessing the dataset and discuss potential database applications. The ECB-water quality (ECB-WQ) database is comprised of hydrology and water quality data from three privately owned farms in Northwest Ohio and Northeast Indiana and is available for download through the United States Department of Agriculture Ag Data Commons.

View Article and Find Full Text PDF

Sources and Pathways of PFAS Occurrence in Water Sources: Relative Contribution of Land-Applied Biosolids in an Agricultural Dominated Watershed.

Environ Sci Technol

January 2025

Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.

This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.

View Article and Find Full Text PDF

Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.

View Article and Find Full Text PDF

The dynamics of fluvial erosion responds to soil erosion and surface runoff on hillslopes due to land use and environmental fragility, conditioned by the soil, geology, relief, and rainfall rate. Despite the increasing problems associated with fluvial erosion in Brazil, little information is available on bedload transport in headwater catchments under intense agricultural activity. Therefore, this study sought to characterize the fluvial erosion processes and bedload dynamics in an experimental catchment in southern Brazil located at the edge of the Brazilian Meridional plateau, which is representative of a large area of high environmental fragility and intense agricultural activity in Southern Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!