The present study aims to evaluate the physicochemical, rheological, and safety properties of starches isolated from maize kernels with different types of defects. Starch isolation showed to be a valuable alternative to defective yellow maize kernels, since the presence of the evaluated kernel defects (broken, fermented, rotten, moldy, germinated, insect-damaged, and shrunken and immature kernels) did not provide significant changes on starch purity and colour. Only starch isolated from shrunken and immature kernels exhibited reduced extractability. Starch obtained from germinated kernels exhibited the greatest solubility. While flour from moldy kernels showed 7.5 ppb of aflatoxin A1, 25.0 ppb of aflatoxin A2, and 1229.4 ppb of fumonisin B1, any of these mycotoxins were detected in isolated starch. In sum, minor changes in pasting, thermal, crystallinity, and morphological properties of the isolated starches from defective kernels were determined, which does not impair its use in industrial processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.09.026 | DOI Listing |
Sci Rep
January 2025
Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran.
In maize breeding, enhancing yield through genetic insights is crucial yet challenged by the complex interplay of agronomic traits. This study utilized a diallel mating design involving nine advanced early maize lines to dissect the genetic architecture underlying key agronomic traits and their impact on yield. Over two consecutive years (2018-2019 and 2019-2020), 36 hybrids derived from these lines were grown across two locations, Karaj, Alborz, Iran and Kermanshah (2019-2020), Iran, in a randomized complete block design with three replications.
View Article and Find Full Text PDFNat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA.
Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.
View Article and Find Full Text PDFMicrob Pathog
December 2024
IDIAP, Ciudad Del Saber, Panama.
Zea mays is the second most popular cereal crop in Panama. Its production is intended for human and livestock consumption but is threatened by several diseases. We report the occurrence of Fusarium ear rot, a disease that has affected corn production in a specific region of Panama.
View Article and Find Full Text PDFCold Spring Harb Protoc
December 2024
Christopher S. Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
In cereal crops, seed quality is determined by the composition and levels of protein-bound amino acids, which account for ∼90% of the seed total amino acid content. In maize particularly, seed quality is affected by the low levels of lysine and tryptophan, two amino acids that humans and animals cannot synthesize and must obtain from the diet. The low levels of these two amino acids in seeds is due to the dominance of seed storage proteins, namely zeins, which are deficient in these two amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!