Non-alcoholic steatohepatitis (NASH) is one of the aggressive forms of non-alcoholic fatty liver disease (NAFLD) and is a potential risk factor of HCC. This study reports the curative effect of tiliamosine on NASH. Tiliamosine was isolated from Tiliacora racemosa Colebr. (Menispermaceae) and its structure was confirmed by studying the physical and spectroscopic data. The effects of tiliamsoine on lipid accumulation and lipotoxicity were evaluated using palmitate-oleate induced steatosis in HepG2 cells. The in vivo efficacy of tiliamosine was evaluated using HFD fed, DEN induced non-alcoholic steatohepatitis Wistar rats. In HepG2 cells, tiliamosine did not affect the cell viability up to 100 μM concentration and showed GI value of 264.28 μM. The treatment with tiliamsoine significantly lowered the ORO concentration by 44.17% and triglyceride accumulation by 69.32% at 50 μM concentration (P < 0.005). It also reduced the leakage of LDH and transaminases in PO-BSA induced HepG2 cells. The treatment with tiliamsoine significantly decreased the plasma levels of transaminases, phosphatase and LDH (P < 0.05) in HFD-DEN induced steatohepatitis. The histology and the immunohistochemistry of the hepatic sections were in accordance with the biochemical findings. Preliminary molecular analysis indicated that the hepatic FXR expression was upregulated and TNFα expression was downregulated by the treatment with tiliamsoine. This study provided preliminary evidence on the use of tiliamosine for the treatment of NASH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.09.116DOI Listing

Publication Analysis

Top Keywords

non-alcoholic steatohepatitis
12
tiliacora racemosa
8
hepg2 cells
8
μm concentration
8
tiliamosine
5
hepatoprotective bisbenzylisoquinoline
4
bisbenzylisoquinoline alkaloid
4
alkaloid tiliamosine
4
tiliamosine tiliacora
4
racemosa high-fat
4

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) includes simple steatosis and metabolic dysfuncion-associated steatohepatitis (MASH), with fibrosis in MASH serving as a critical prognostic marker. This study investigates the effects of Roux-en-Y gastric bypass (RYGB) on fibrotic MASH, assessed using the fibrotic NASH index (FNI) and the non-invasive NASH detection score (NI-NASH-DS), as well as provides further data on the diagnostic accuracy of both scores.

Methods: A retrospective cohort study was conducted involving 104 individuals (91.

View Article and Find Full Text PDF

Insulin Resistance Mediates the Association Between Vitamin D and Non-Alcoholic Fatty Liver Disease.

Int J Prev Med

December 2024

Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China.

Background: Vitamin D (VD) deficiency and insulin resistance (IR) increase the risk of non-alcoholic fatty liver disease (NAFLD), but few studies have explored the potential mechanisms by which IR mediates the association between VD and the pathogenesis of NAFLD at the genetic level using publicly available databases.

Methods: This is a cross-sectional study, and we utilized the National Health and Nutrition Examination Survey (NHANES) dataset, as well as data from GSE200765 obtained from the Gene Expression Omnibus (GEO) website. A total of 723 individuals who had completed liver ultrasound examination and the detection of VD levels were included in the final analysis.

View Article and Find Full Text PDF

Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.

Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.

View Article and Find Full Text PDF

Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!