AI Article Synopsis

  • The study explored the effects of administering human dental pulp stem cells (DPSCs) on ischemic brain injury in rats following a stroke simulation, specifically after middle cerebral artery occlusion.
  • Researchers found that DPSCs delivered immediately or three hours after blood flow restoration significantly reduced brain damage (infarct volume) and improved motor functions in the rats.
  • The results suggest that DPSC treatment may work by reducing inflammation in the brain during the early stages of recovery from a stroke, highlighting its potential as a therapeutic option within a relevant timeframe.

Article Abstract

Aims: Numerous experimental studies have shown that cellular therapy, including human dental pulp stem cells (DPSCs), is an attractive strategy for ischemic brain injury. Herein, we examined the effects of intravenous DPSC administration after transient middle cerebral artery occlusion in rats.

Methods: Male Sprague-Dawley rats received a transient 90 min middle cerebral artery occlusion. DPSCs (1 × 10 cells) or vehicle were administered via the femoral vein at 0 h or 3 h after ischemia-reperfusion. PKH26, a red fluorescent cell linker, was used to track the transplanted cells in the brain. Infarct volume, neurological deficits, and immunological analyses were performed at 24 h and 72 h after reperfusion.

Results: PKH26-positive cells were observed more frequently in the ipsilateral than the contralateral hemisphere. DPSCs transplanted at 0 h after reperfusion significantly reduced infarct volume and reversed motor deficits at 24 h and 72 h recovery. DPSCs transplanted at 3 h after reperfusion also significantly reduced infarct volume and improved motor function compared with vehicle groups at 24 h and 72 h recovery. Further, DPSC transplantation significantly inhibited microglial activation and pro-inflammatory cytokine expression compared with controls at 72 h after reperfusion. Moreover, DPSCs attenuated neuronal degeneration in the cortical ischemic boundary area.

Conclusions: Systemic delivery of human DPSCs after reperfusion reduced ischemic damage and improved functional recovery in a rodent ischemia model, with a clinically relevant therapeutic window. The neuroprotective action of DPSCs may relate to the modulation of neuroinflammation during the acute phase of stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.09.084DOI Listing

Publication Analysis

Top Keywords

infarct volume
12
24 h 72 h
12
reperfusion reduced
12
human dental
8
dental pulp
8
pulp stem
8
stem cells
8
middle cerebral
8
cerebral artery
8
artery occlusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!