A novel hydrophilic-lipophilic balanced (HLB) thin film solid-phase microextraction (TF-SPME) device is proposed for polarity-balanced determinations of volatile organic compounds. The proposed HLB particles used in the preparation of these membranes were prepared using a precipitation polymerization technique and determined to have a specific surface area of 335 m/g with an average pore diameter of 13 Å. Membranes prepared from these particles were found to extract 1.8, 2.2, 1.9, 1.7, 2.0, and 1.3 times more benzene, 2-pentanone, 1-nitropropane, pyridine, 1-pentanol, and octane, respectively, than the established divinylbenzene/polydimethylsiloxane (DVB/PDMS)-based membranes. Furthermore, membranes prepared from these lab-made particles were shown to extract significantly ( p = 0.00047) larger amounts of these analytes than membranes prepared from comparative commercial HLB particles. The intermembrane extraction efficiency between 3 membranes was determined to be reproducible at 95% confidence for 4 different coating chemistries tested, including the DVB/PDMS membranes, and those prepared with 3 different HLB compositions. Furthermore, method reliability was established by confirming that, once extracted, modified McReynolds standards were stable on the HLB/PDMS membranes stored in thermal desorption tubes on an autosampler rack for at least 120 h, for 5 of the 6 standards, but only for 24 h for pyridine at a 95% level of confidence. Finally, using a TF-SPME enabled, portable GC/MS instrument, an entirely on-site proof of concept application was performed for the determination and quantitation of chlorination byproducts in a private hot tub, successfully identifying chloroform, bromodichloromethane, dichloroacetonitrile, chlorobenzene, benzonitrile, and benzyl chloride, while further quantifying chloroform and dichloroacetonitrile at levels of 270 and 79 ppb with %RSD values of 13% and 5%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b04544DOI Listing

Publication Analysis

Top Keywords

membranes prepared
20
thin film
8
volatile organic
8
organic compounds
8
hlb particles
8
membranes
8
particles extract
8
prepared
5
development hydrophilic
4
hydrophilic lipophilic
4

Similar Publications

The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.

View Article and Find Full Text PDF

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!