A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enrichment of Phosphorylated Peptides with Metal-Organic Framework Nanosheets for Serum Profiling of Diabetes and Phosphoproteomics Analysis. | LitMetric

Enrichment of Phosphorylated Peptides with Metal-Organic Framework Nanosheets for Serum Profiling of Diabetes and Phosphoproteomics Analysis.

Anal Chem

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science , Nanjing Normal University, Nanjing 210023 , China.

Published: November 2018

Capturing phosphopeptides from complicated biological samples is essential for the discovery of new post-translational modification sites and disease diagnostics. Although several two-dimensional (2-D) materials have been used for phosphopeptides capturing, metal-organic framework (MOF) nanosheets have not been reported. The Ti-based MOF nanosheets have well-defined 2-D morphology, high density of active sites, large surface area, and an ultrathin structure. Phosphopeptides can be efficiently extracted and superior detection limits of 0.1 fmol μL can be achieved even for an extremely low molar ratio of phosphoprotein/nonphosphoprotein (1:10000) mixtures. The selectivity over nonphosphopeptides can be enhanced further by pretreatment with a 10 mM salt solution (β-glycerophosphate disodium, NaCl, or KCl). The performance of 2-D Ti-based MOF nanosheets is much better than Zr-based MOF (Zr-BTB) nanosheets or any other Ti-based 3-D MOF counterpart, such as MIL-125 and NH-MIL-125. The nanosheets were used for in situ isotope labeling for abnormally regulated phosphopeptides analysis from serum samples of type 2 diabetes patients. The relative quantitative results showed that three of the phosphorylated fibrinogen peptides A (FPA, DpSGEGDFLAEGGGV, DpSGEGDFLAEGGGVR, and ADpSGEGDFLAEGGGVR) were down-regulated, while the other isoform (ADpSGEGDFLAEGGGV) was up-regulated in the serum samples of type 2 diabetes patients compared with those of healthy volunteers. Finally, proteomics analysis showed selective enrichment of phosphopeptides with 2-D Ti-based MOF nanosheets from real samples, including tryptic digests of mouse brain neocortex lysate, mouse spinal cord lysate, and mouse testis lysate, followed by LC-MS/MS analysis. Total numbers of 2601, 3208, and 2866 phosphopeptides were successfully identified from the three samples, respectively. The 2-D Ti-based MOF nanosheets significantly improved sample preparation for mass spectrometric analysis in phosphopeptides and phosphoproteomics research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b04417DOI Listing

Publication Analysis

Top Keywords

mof nanosheets
20
ti-based mof
16
2-d ti-based
12
metal-organic framework
8
nanosheets
8
serum samples
8
samples type
8
type diabetes
8
diabetes patients
8
lysate mouse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!