Pyridalyl is an insecticide that shows significant efficacy against Plutella xylostella, a notorious pest insect worldwide. In this study, we monitored resistance of P. xylostella to pyridalyl in China from 2016 to 2017, determined cross-resistance, inheritance, and synergism of pyridalyl resistance in two pyridalyl-resistant populations, one field-evolved resistant population (ZL-PR) and one laboratory-selected resistant population (XY-PR). We found that variation in susceptibility among 15 field populations in China from 2016 to 2017 was high, with mean LC50 values ranging from 1.839 to 1,652 mg/liter. The laboratory-selected XY-PR strain showed 31.3-fold resistance to pyridalyl and moderate cross-resistance to fipronil. The ZL-PR displayed 1,050.2-fold resistance to pyridalyl and high resistance to all tested insecticides. Genetic analysis illustrated that pyridalyl resistance in ZL-PR was autosomally inherited and incompletely recessive. However, pyridalyl resistance in the XY-PR strain was autosomally inherited but incompletely dominant. Moreover, piperonyl butoxide significantly inhibited pyridalyl resistance in the XY-PR strain. In conclusion, P. xylostella field populations from South China have high levels of resistance to pyridalyl and different modes of inheritance of resistance were found in XY-PR and ZL-PR. Moreover, enhanced oxidative metabolism is possibly involved in resistance of the XY-PR strain but not in the ZL-PR strain.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toy334DOI Listing

Publication Analysis

Top Keywords

resistance pyridalyl
16
pyridalyl resistance
16
xy-pr strain
16
resistance xy-pr
16
resistance
12
pyridalyl
10
cross-resistance inheritance
8
inheritance synergism
8
plutella xylostella
8
pyridalyl china
8

Similar Publications

In 2020, the invasive (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly or indirectly.

View Article and Find Full Text PDF

Background: Plutella xylostella has developed resistance to a variety of pesticides in the field. Selection, inheritance, a near-isogenic line, cross-resistance and biochemical mechanisms of pyridalyl resistance were characterized in a field-collected resistant population of P. xylostella from China.

View Article and Find Full Text PDF

Frankliniella occidentalis, the western flower thrips, is one of most notorious pests on a variety of crops worldwide and many populations have high resistance to different types of insecticides. In order to determine the susceptibility of F. occidentalis to the insecticide pyridalyl in the field and to understand the potential mechanism of resistance, we conducted field monitoring of resistance and investigated cross-resistance, fitness cost, and synergism for the 75.

View Article and Find Full Text PDF

Cross-resistance, biochemical mechanism and fitness costs of laboratory-selected resistance to pyridalyl in diamondback moth, Plutella xylostella.

Pestic Biochem Physiol

February 2020

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.. Electronic address:

Pyridalyl belongs to one novel type of insecticides with uncertain mode of action, and it showed significant efficacy against Plutella xylostella, which has been considered as one notorious insect pest in the world. To characterize pyridalyl resistance in P. xylostella, one susceptible strain XY-PS and one laboratory-selected pyridalyl-resistant strain XY-PR (34.

View Article and Find Full Text PDF

Pyridalyl is an insecticide that shows significant efficacy against Plutella xylostella, a notorious pest insect worldwide. In this study, we monitored resistance of P. xylostella to pyridalyl in China from 2016 to 2017, determined cross-resistance, inheritance, and synergism of pyridalyl resistance in two pyridalyl-resistant populations, one field-evolved resistant population (ZL-PR) and one laboratory-selected resistant population (XY-PR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!